What is the Flaw in the 'Proof' That -1 Equals 1?

  • Thread starter Thread starter spec138
  • Start date Start date
  • Tags Tags
    Proof
AI Thread Summary
The discussion addresses a flawed mathematical proof claiming that -1 equals 1. The error lies in improperly applying the square root property, which only holds for positive numbers, to negative values. Participants emphasize the importance of considering both positive and negative roots when dealing with square roots of complex numbers. They highlight that the assumption of equality in the proof leads to a contradiction, revealing the mistake. Overall, the conversation clarifies that the proof is invalid due to misapplication of mathematical principles.
spec138
Messages
4
Reaction score
0
Hi all. I found this "proof" and was just wondering if there is an error in it or not, because I couldn't find it. Any ideas?

-1/1=1/-1
sqrt(-1/1)=sqrt(1/-1)
sqrt(-1)/sqrt(1)=sqrt(1)/sqrt(-1)
i/1=1/i
i*i/1=i*1/i
i^2/1=i/i
-1=1 ?
 
Mathematics news on Phys.org
sqrt(-1/1)=sqrt(1/-1)
sqrt(-1)/sqrt(1)=sqrt(1)/sqrt(-1)

The transition between these two steps is invalid. There is no reason you would be allowed to do this.

There is a basic property of the square root function that sqrt(a)*sqrt(b)=sqrt(a*b) where a and b are positive, but -1/1 isn't positive so we don't get to use that here.

I've actually seen this one before a page promoting "Time Cube" theory!
 
The problem comes from writing simple "sqrt" functions rather than "+/-sqrt". IOW, whenever you take the square root, you have to take into consideration that there are two square roots of any complex number, which differ by a factor of -1. Deciding which roots to take to maintain an equality often requires working through exactly the kind of computation you have shown.

I would have looked at the second line in your "proof" and decide which sign each sqrt should have. To do that I would go through pretty much the proof you have, and when I got "-1=1", I would say, "Oh - that's not it - I guess the two sqrts have to have opposite signs to maintain the equality."

I know that looks circular, but it's really how you decide which root to take. It might be clearer with pure real numbers:

(-2)^2 = (2)^2
sqrt((-2)^2) = sqrt((2)^2)
-2 = 2

oops ... should have had a minus sign in line 2!
 
Just to add this wasn't my proof and I knew it wasn't true. I just couldn't find the mistake. Thanks guys.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top