MHB What is the geometric progression with 4 and 5 digit terms?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on finding the first ten terms of a geometric progression where the first six terms have four digits and the tenth term has five digits. The participants clarify that the terms must be integers and derive conditions for the first term and common ratio. The common ratio is determined to be between 1.291 and 1.584, leading to the conclusion that it must be rational, specifically 3/2. The only suitable first term that meets all criteria is 1024, resulting in the sequence: 1024, 1536, 2304, 3456, 5184, 7776, 11664, 17496, 26244, 39366.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find $$a_1,\;a_2,\;a_3,\;\cdots\;, a_{10}$$ given that:

i) They are in geometric progression, in this order.
ii) $$a_1,\;a_2,\;a_3,\;a_4,\;a_5,\;a_6$$ have 4 digits and $$a_{10}$$ have 5 digits.
 
Mathematics news on Phys.org
Clearly the geometric term $r$ has to be greater than 1. Let $1000 \leq a_6 < 10000$. Then we have the following constraints on $r$:

1. $a_1 \geq 1000$, that is, $a_6 \cdot r^{-5} \geq 1000 ~ ~ ~ \implies ~ ~ ~ r \leq \sqrt[5]{\frac{a_6}{1000}}$

2. $a_7 \geq 10000$, which implies $a_6 \cdot r > 10000 ~ ~ ~ \implies ~ ~ ~ r \geq \frac{10000}{a_6}$

3. $a_{10} < 10000$, so $a_6 \cdot r^4 < 100000 ~ ~ ~ \implies ~ ~ ~ r < \sqrt[4]{\frac{100000}{a_6}}$

So, given $1000 \leq a_6 < 10000$, any $r$ satisfying the condition below is a solution to the problem.
$$\frac{10000}{a_6} < r < \min{\left ( \sqrt[5]{\frac{a_6}{1000}}, \sqrt[4]{\frac{100000}{a_6}} \right )}$$
Note that this interval may be empty. I haven't done the calculations but it is obvious that for $a_6$ close to $1000$ there is no solution, and so on. Also the inequalities may be a bit wrong with respect to $\leq$ and $<$ because I'm lazy but I trust it will not be an issue.

Let's try it with $a_6 = 9183$ at random. Then we have:
$$\frac{10000}{a_6} \approx 1.09$$
$$\sqrt[5]{\frac{a_6}{1000}} \approx 1.56$$
$$\sqrt[4]{\frac{100000}{a_6}} \approx 1.82$$
Therefore our condition on $r$ is approximately:
$$1.09 < r < 1.56$$
Arbitrarily, let's pick $r = 1.2$. Then:
$$a_1 = a_6 \cdot r^{-5} \approx 3690$$
And the entire sequence follows, rounded up to integers:
$$a = \{ 3690, 4429, 5314, 6377, 7653, 9183, 11020, 13224, 15868, 19042 \}$$
$$\blacksquare$$

This approach assumes that $a_7$ has 5 digits, this wasn't explicitly specified in the problem and so this method does not capture all solutions (it does capture all solutions under the assumption that $a_7$ has 5 digits, though, as far as I can tell, and should be able to be tweaked to assume that $a_7$ has 4 digits but $a_8$ has 5 and so on).​
 
Hi Bacterius,

Thanks for participating but I believe the problem is set for not allowing us to round the answer to the nearest integer.:o

While I managed to solve it by generating a sequence (that consists of only integers value of the first ten terms) that satisfied the aforementioned conditions, I'm not certain if that is the only pair of answer to this problem.
 
anemone said:
Hi Bacterius,

Thanks for participating but I believe the problem is set for not allowing us to round the answer to the nearest integer.:o

While I managed to solve it by generating a sequence (that consists of only integers value of the first ten terms) that satisfied the aforementioned conditions, I'm not certain if that is the only pair of answer to this problem.

Oh, right, I am stupid, haha. I got confused between digits and integers. Sorry. Well at least my solution works for reals with thresholds. I take it the geometric term is an integer too, then. Anyway, back to the drawing board (Tongueout)
 
[sp]Bacterius's method looks like a good starting point. If the first term is $a$ and the common ratio is $r$, then we have the conditions $a\geqslant 1000$, $ar^5<10\,000$, $ar^9\geqslant 10\,000$. That tells us that $r^5<10$ and $r^9>10$, from which $10^{1/9}<r<10^{1/5}$, or $1.291<r<1.584$.

Next, if the numbers $ar^k\ (0\leqslant k\leqslant 9)$ are all integers, then $r$ must be rational, say $r=p/q$ with $p,q$ co-prime integers. If $ar^9 = \dfrac{ap^9}{q^9}$ is to be an integer then $a$ must be a multiple of $q^9$. But that forces $q$ to be $2$ (because $3^9 = 19683$, which already has five digits). Therefore $r = 3/2$ and $a$ must be a multiple of $2^9 = 512$. Since $a$ has four digits it must be at least $2*512 = 1024$. The next possibility would be $a=3*512=1536$. But then $ar^5 = 11664$, which is too big, since we are told that $a_6$ has four digits.

Therefore the only possibility is that $a=1024$ and $b=3/2$. The sequence is then
1024
1536
2304
3456
5184
7776
11664
17496
26244
39366​
[/sp]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
3
Views
3K
Back
Top