Define $f(x) := \sin \sqrt{x}$. The limit can be rewritten as $f(x+1)-f(x)$. Since
$f$ is continuous and differentiable on $\mathbb{R}^+$, by the Mean Value Theorem, we can find
$c \in [x, x+1]$ where:
\begin{equation}
f'(c) = \frac{f(x+1)-f(x)}{(x+1)-x}.
\end{equation}
For any given $x$, we can find $c \geq x$, so the equation can be rewritten as:
\begin{equation}
\sin \sqrt{x+1} - \sin \sqrt{x} = f'(c) = \frac{\cos \sqrt{c}}{2 \sqrt{c}} \leq \frac{\cos\sqrt{c}}{2\sqrt{x}}.
\end{equation}
Therefore,
\begin{equation}
\bigl|{\sin \sqrt{x+1} - \sin \sqrt{x}} \bigr| \leq \frac{\bigl|{\cos\sqrt{c}}\bigr|}{\bigl|{2\sqrt{x}}\bigr|} \leq \frac{1}{2\sqrt{x}}.
\end{equation}
We know that $\lim_{x \to \infty} \frac{1}{2\sqrt{x}} = 0$, so by the Squeeze Theorem and last equation
we have that:
\begin{equation}
\lim_{x \to \infty} (\sin \sqrt{x+1} - \sin \sqrt{x}) = 0.
\end{equation}