What Is the Limit of $t \cos(wt) e^{-st}$ as $t \to \infty$?

  • MHB
  • Thread starter evinda
  • Start date
  • Tags
    Limit
In summary, we have discussed finding the Laplace transform of the function $t\cos(wt), w>0$ and determining the limit as $t\to \infty$. We used the rule for partial integration and applied l'Hospital's rule to find the limit. We also found an alternative method by using the squeeze rule and considering the real and imaginary parts of the resulting integral. Finally, we showed that the two methods agree for $\text{Re}(s) > 0$.
  • #1
evinda
Gold Member
MHB
3,836
0
Hi! :)
I have to find the Laplace transform of the function $tcos(wt) , w>0 $ .
That's what I have done so far:
$I=\int_{0}^{\infty}e^{-st}tcos(wt)dt=\int_{0}^{\infty}(\frac{-e^{-st}}{s})'tcos(wt)dt=\left [(\frac{-e^{-st}}{s})tcos(wt) \right ]_{0}^{\infty}-\int_{0}^{\infty}(\frac{-e^{-st}}{s}(cos(wt)-sin(wt))dt $

How can I find the limit,when $t\to \infty$ ?
 
Physics news on Phys.org
  • #2
evinda said:
Hi! :)
I have to find the Laplace transform of the function $tcos(wt) , w>0 $ .
That's what I have done so far:
$I=\int_{0}^{\infty}e^{-st}tcos(wt)dt=\int_{0}^{\infty}(\frac{-e^{-st}}{s})'tcos(wt)dt=\left [(\frac{-e^{-st}}{s})tcos(wt) \right ]_{0}^{\infty}-\int_{0}^{\infty}(\frac{-e^{-st}}{s}(cos(wt)-sin(wt))dt $

How can I find the limit,when $t\to \infty$ ?

Hmm, let's see... according to the rule for partial integration, we have:
$$\int udv = uv - \int vdu$$
So we get:
\begin{aligned}
I &= \int_0^\infty t\cos(\omega t)\ d\left(\frac{-e^{-st}}{s}\right) \\
&= \left[ t\cos\omega t \cdot \frac{-e^{-st}}{s} \right]_0^\infty - \int \frac{-e^{-st}}{s} d(t\cos(\omega t)) \\
&= \left[ t\cos(\omega t) \cdot \frac{-e^{-st}}{s} \right]_0^\infty - \int_0^\infty \frac{-e^{-st}}{s} (\cos(\omega t) - \omega t \sin(\omega t)) dt
\end{aligned}
When $t \to \infty$ we get:
$$\infty \cdot \cos(\omega \cdot \infty) \cdot \frac{-e^{-s \cdot \infty}}{s}$$
If $\mathfrak{Re}(s) > 0$, the exponential power will approach 0 faster than any of the rest of the expression diverges. So this part of the result is 0.
 
  • #3
I like Serena said:
Hmm, let's see... according to the rule for partial integration, we have:
$$\int udv = uv - \int vdu$$
So we get:
\begin{aligned}
I &= \int_0^\infty t\cos(\omega t)\ d\left(\frac{-e^{-st}}{s}\right) \\
&= \left[ t\cos\omega t \cdot \frac{-e^{-st}}{s} \right]_0^\infty - \int \frac{-e^{-st}}{s} d(t\cos(\omega t)) \\
&= \left[ t\cos(\omega t) \cdot \frac{-e^{-st}}{s} \right]_0^\infty - \int_0^\infty \frac{-e^{-st}}{s} (\cos(\omega t) - \omega t \sin(\omega t)) dt
\end{aligned}
When $t \to \infty$ we get:
$$\infty \cdot \cos(\omega \cdot \infty) \cdot \frac{-e^{-s \cdot \infty}}{s}$$
If $\mathfrak{Re}(s) > 0$, the exponential power will approach 0 faster than any of the rest of the expression. So this part of the result is 0.

But how can I prove it?Using the L'Hospital Rule? :confused:
 
  • #4
evinda said:
But how can I prove it?Using the L'Hospital Rule? :confused:

Yes.
But first consider that:
$$\frac{-t}{se^{st}} \le t\cos(\omega t) \frac{e^{-st}}{s} \le \frac{+t}{se^{st}}$$
Then apply l'Hospital's rule to both the LHS and the RHS.
Apply the squeeze rule after that.
 
  • #5
If you want to be cute, notice that

$$\int_{0}^{\infty} t \cos (\omega t) e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{i \omega t}e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{-t(s-iw)} \ dt$$

$$ = \text{Re} \Bigg( - \frac{t}{s-iw} e^{-t(s-i \omega)} \Big|^{t=\infty}_{t=0} + \int_{0}^{\infty} \frac{1}{s-i \omega} e^{-t(s-i \omega)} \ dt \Bigg) = \text{Re} \int_{0}^{\infty} \frac{1}{s-i \omega} e^{-t(s-i \omega)} \ dt $$

$$ = \text{Re} \frac{1}{(s-i \omega)^{2}} \int_{0}^{\infty} e^{-u} \ du = \text{Re} \ \frac{1}{(s-i \omega)^{2}}$$

$$ = \text{Re} \ \frac{1}{(s-i \omega)^{2}} \frac{(s+i \omega)^{2}}{(s+ i \omega)^{2}} = \text{Re} \ \frac{s^{2} - w^{2} + 2 i \omega s}{(s^{2}+ \omega^{2})^{2}} = \frac{s^{2}-\omega^{2}}{(s^{2}+\omega^{2})^{2}}$$And now we also know that

$$\int_{0}^{\infty} t \sin( \omega t) e^{-st} \ dt = \text{Im} \ \frac{s^{2} - w^{2} + 2 i \omega s}{(s^{2}+ \omega^{2})^{2}} = \frac{2 \omega s}{(s^{2}+\omega^{2})^{2}} $$
 
  • #6
I like Serena said:
Yes.
But first consider that:
$$\frac{-t}{se^{st}} \le t\cos(\omega t) \frac{e^{-st}}{s} \le \frac{+t}{se^{st}}$$
Then apply l'Hospital's rule to both the LHS and the RHS.
Apply the squeeze rule after that.

Nice!Thank you very much! :eek:

- - - Updated - - -

Random Variable said:
If you want to be cute, notice that

$$\int_{0}^{\infty} t \cos (\omega t) e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{i \omega t}e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{-t(s-iw)} \ dt$$

$$ = \text{Re} \Bigg( - \frac{t}{s-iw} e^{-t(s-i \omega)} \Big|^{t=\infty}_{t=0} + \int_{0}^{\infty} \frac{1}{s-i \omega} e^{-t(s-i \omega)} \ dt \Bigg) = \text{Re} \int_{0}^{\infty} \frac{1}{s-i \omega} e^{-t(s-i \omega)} \ dt $$

$$ = \text{Re} \frac{1}{(s-i \omega)^{2}} \int_{0}^{\infty} e^{-u} \ du = \text{Re} \ \frac{1}{(s-i \omega)^{2}}$$

$$ = \text{Re} \ \frac{1}{(s-i \omega)^{2}} \frac{(s+i \omega)^{2}}{(s+ i \omega)^{2}} = \text{Re} \ \frac{s^{2} - w^{2} + 2 i \omega s}{(s^{2}+ \omega^{2})^{2}} = \frac{s^{2}-\omega^{2}}{(s^{2}+\omega^{2})^{2}}$$And now we also know that

$$\int_{0}^{\infty} t \sin( \omega t) e^{-st} \ dt = \text{Im} \ \frac{s^{2} - w^{2} + 2 i \omega s}{(s^{2}+ \omega^{2})^{2}} = \frac{2 \omega s}{(s^{2}+\omega^{2})^{2}} $$

Great!I found the same result..! Thanks for your answer! :D
 
  • #7
Let

\(\displaystyle F(\omega) = \int_{0}^{\infty} \sin(\omega t) e^{-st} \ dt=\frac{\omega}{s^2+\omega^2}\)

\(\displaystyle F'(\omega) = \int_{0}^{\infty} t \cos(\omega t) e^{-st} \ dt=\frac{s^2-\omega^2}{(s^2+\omega^2)^2}\)
 
  • #8
Random Variable said:
If you want to be cute, notice that

$$\int_{0}^{\infty} t \cos (\omega t) e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{i \omega t}e^{-st} \ dt$$

Can you support that your result also holds for complex $s$?
 
  • #9
I like Serena said:
Can you support that your result also holds for complex $s$?

Is it necessary to do it with $\text{Re and Im}$ ? :eek: I haven't done it like that!
 
  • #10
evinda said:
Is it necessary to do it with $\text{Re and Im}$ ? :eek: I haven't done it like that!

No, that is not necessary. It is just a cute way to it. :)
And as yet, I am questioning its validity, since it doesn't take complex values of $s$ into account.
 
  • #11
I'm going to take the easy way out of this.

The functions $\int_{0}^{\infty} t \cos (\omega t) e^{-st}$ and $ \frac{s^{2}-\omega^{2}}{(s^{2}+\omega^{2})^{2}}$ agree for $s>0$.

The function $\frac{s^{2}-\omega^{2}}{(s^{2}+\omega^{2})^{2}}$ is analytic for $\text{Re}(s) > 0$.

And by Morera's theorem (in combination with Fubini's theorem) $\int_{0}^{\infty} t \cos (\omega t) e^{-st} \ dt$ is analytic for $\text{Re}(s) > 0$ as well.

So by analytic continuation, they must agree for $\text{Re} (s) > 0 $.
 
Last edited:

FAQ: What Is the Limit of $t \cos(wt) e^{-st}$ as $t \to \infty$?

How do I know when a limit exists?

A limit exists when the values of a function approach a single value as the input approaches a specific value. This can be determined by evaluating the function at values close to the desired input and seeing if the output values approach a single value.

What is the difference between a one-sided limit and a two-sided limit?

A one-sided limit is the limit of a function as the input approaches a specific value from only one side (either the left or the right). A two-sided limit is the limit of a function as the input approaches a specific value from both the left and the right sides.

How do I find the limit algebraically?

To find the limit algebraically, you can use the properties of limits and algebraic manipulation to simplify the function and evaluate the limit. You can also use the limit laws to evaluate limits of more complex functions.

Can I use a graph to find the limit of a function?

Yes, you can use a graph to estimate the limit of a function. By looking at the behavior of the graph near the desired input, you can determine if the limit exists and what its value may be. However, a graph cannot give you an exact value for the limit.

What is L'Hopital's rule and when can it be used to find a limit?

L'Hopital's rule is a mathematical theorem that allows you to find the limit of a function by taking the limit of the ratio of the derivatives of the function. It can be used when evaluating limits of functions that have indeterminate forms, such as 0/0 or ∞/∞.

Similar threads

Replies
17
Views
2K
Replies
7
Views
3K
Replies
7
Views
2K
Replies
39
Views
6K
Replies
2
Views
1K
Replies
4
Views
2K
Replies
4
Views
2K
Back
Top