What is the Method to Calculate Sin β in a Triangle?

  • Thread starter Thread starter basty
  • Start date Start date
  • Tags Tags
    Sin
AI Thread Summary
To calculate sin β in the triangle, the initial approach using tangent was incorrect, as the angle calculated was not accurate. The correct method involves using the Pythagorean theorem to find the hypotenuse, leading to the expression sin β = 2/√13. This can be simplified to 2√13/13. Additionally, using a calculator, atan(2/3) yields approximately 33 degrees, and sin(33) confirms the value as 0.546, aligning with the derived formula. The discussion emphasizes the importance of using the correct angular measure and methods for accurate trigonometric calculations.
basty
Messages
94
Reaction score
0
How do you find the numerical value sin β for the triangle shown on below image?

I can only find

##\tan β = \frac{AB}{BD} = \frac{2x}{3x} = \frac{2}{3} = 0.666666667##

then

##β = \tan^{-1} 0.666666667 = 0.59°##

then

##\sin β = \sin 0.59° = 0.0103##

Is there another method to find the numerical value of sin β?

triangle.png
 
Mathematics news on Phys.org
basty said:
How do you find the numerical value sin β for the triangle shown on below image?

I can only find

##\tan β = \frac{AB}{BD} = \frac{2x}{3x} = \frac{2}{3} = 0.666666667##

then

##β = \tan^{-1} 0.666666667 = 0.59°##

then

##\sin β = \sin 0.59° = 0.0103##

Is there another method to find the numerical value of sin β?

triangle.png

First of all, tan-1(2/3) ≠ 0.59°

There are two common angular measures in use: degrees and radians. The calculators we use to compute the trig functions and their inverses need to be set on one measure or the other in order to perform the correct calculation.

The tangent of a 45° angle = 1, so the angle whose tangent is 2/3 will be closer to 45° than to 0°.

The Pythagorean Identity, sin2(θ) + cos2(θ) = 1, can be manipulated to give

tan2(θ) + 1 = sec2(θ) or
cot2(θ) + 1 = csc2(θ),

where
csc(θ) = 1 / sin(θ)
sec(θ) = 1 / cos(θ)
cot(θ) = 1 / tan(θ)
 
You can use the pythagorean theorem in triangle ABD to find y with respect to x and then find sin beta
 
Mastermind01 said:
You can use the pythagorean theorem in triangle ABD to find y with respect to x and then find sin beta

From the pythagorean formula, I get:

##y^2 = (2x)^2 + (3x)^2##
##y^2 = 4x^2 + 9x^2##
##y^2 = 13x^2##
##y = \sqrt{13x^2}##
##y = \sqrt{13}x##

##\sin β = \frac{2x}{\sqrt{13}x} = \frac{2}{\sqrt{13}} = \frac{2}{\sqrt{13}} × \frac{\sqrt{13}}{\sqrt{13}} = \frac{2\sqrt{13}}{13}##

Is that correct?
 
basty said:
From the pythagorean formula, I get:

##y^2 = (2x)^2 + (3x)^2##
##y^2 = 4x^2 + 9x^2##
##y^2 = 13x^2##
##y = \sqrt{13x^2}##
##y = \sqrt{13}x##

##\sin β = \frac{2x}{\sqrt{13}x} = \frac{2}{\sqrt{13}} = \frac{2}{\sqrt{13}} × \frac{\sqrt{13}}{\sqrt{13}} = \frac{2\sqrt{13}}{13}##

Is that correct?

That is correct.

You can even use a calculator to tally.

atan(2/3) = 33 degrees (approximately)

sin(33) = 0.546 = 2 / sqrt(13)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top