I What is the origin of x=e^(rt) in Simple Harmonic Motion?

AI Thread Summary
The discussion centers on the origin of the equation x = e^(rt) in the context of Simple Harmonic Motion (SHM). It explains that this form is derived from solving the second-order linear differential equation d²x/dt² + (k/m)x = 0, where the solution is guessed to be of the exponential form due to its mathematical properties. The use of Euler's formula allows for the conversion of the exponential solution into trigonometric functions, leading to the general solution x(t) = Acos(αt + δ). The conversation also touches on the concept of "ansatz," which refers to the initial educated guess for the solution form in differential equations. Overall, the exponential function is highlighted as a useful tool in analyzing oscillatory motion.
velvetmist
Messages
15
Reaction score
1
This may be a fool question, but i can't figure where does this come from. I would really appreciate if someone can help me. Thanks.
 

Attachments

  • 4668465.JPG
    4668465.JPG
    15.3 KB · Views: 526
Physics news on Phys.org
The answer should have been X= ei√(k/m)t note the i
 
Hello!
First, Newton's second law. (mass m)
F = ma
-kx = ma
ma + kx = 0
You can divide all by mass.
a + kx/m = 0
We have a differential equation.
d2x/dt2 + kx/m = 0 (Homogeneous)

It was considered that the solution is of the type: x = ert
This is a strategy to solve this kind of second order linear equation.
Then the expression is:(Just by putting ert in place of x.)

d2(ert)/dt2 + ertk/m = 0

Deriving: x = ert ; dx/dt = rert ; d2x/dt2 = r2ert

r2 . ert + ertk/m = 0

We have ert in both parts. Therefore, it is one of the advantages of using exponential because you will always retain this expression when deriving or integrating.

ert . (r2 + k/m) = 0

Another advantage: e^rt≠0. This means that our expression r2 + k / m = 0

r = sqrt(-k/m)

in this case, k / m is constant. For simplicity, I will say that: sqrt (k / m) = α

r = ± i α
i = sqrt(-1) = imaginary number
So we have two expressions: (using x = ert; r = ± i α)

x1 = e+i αt
x2 = e- i αt

Using Euler's formula: Another advantage of e

x1 = cos(αt) + i sin(αt)
x2 = cos(-αt) + i sin(-αt)

Putting in the general solution of this type of equation:

x = c1 x1 + c2 x2
c1 and c2 are constants.

x = c1 ( cos(αt) + i sin(αt) ) + c2 ( cos(-αt) + i sin(-αt) )
x = c1 ( cos(αt) + i sin(αt) ) + c2 ( cos(αt) - i sin(αt) )
x = c1 cos(αt) + c1 i sin(αt) + c2 cos(αt) - c2 i sin(αt)
x = (c1 + c2) cos(αt) + (c1 - c2) i sin(αt)

Only the real part matters here.

x(t) = (c1+c2) cos(αt + δ)
x(t) = Acos(αt + δ)

δ is used to indicate the initial phase. Example: When δ = 0,it means that at time 0 its x is the farthest from the equilibrium position.

x (t) = Acos (αt + δ)
x (0) = Acos (α.0 + 0) = A.The e is very useful for this type of calculation. you may notice some characteristics through it. Example: When the e is accompanied by an imaginary number, wait for an oscillation.

Another situation
In a more "manual" way, you can see the math mechanics that do this e appears.
For example in the drag force. Imagine a body in horizontal motion in which only drag force acts on it.
Drag Force = -kv ; k = constant ; v = speed

F = ma
-kv = ma

m . d2x/dt2 = -kv

dv/dt . 1/v = -k/m

dv . 1/v = -k/m . dt

∫1/v . dv = -∫k/m . dt
limits of integration: initial speed (vi) to final speed (vf).
limits of integration: Initial time(I will consider equal to 0) to final time(T)

ln(vf) - ln (vi) = -k/m T

ln(vf/vi) = -k/m . T

vf/vi = e -k/m . T

vf = vi e-k/m . T

But this way of solving, in more complex problems, can be very laborious.
I hope I've helped. If I made a mistake, please correct me.
 
Last edited:
Freaky Fred said:
It was considered that the solution is of the type: x = ert
This is a strategy to solve this kind of second order linear equation.
I understand the rest of your argument, but this was my original question and i still not getting why this is a possible solution, i mean, i can´t made a proper demostration or something. Is like I'm not taking into account the constants that integrals implies.
 
velvetmist said:
I understand the rest of your argument, but this was my original question and i still not getting why this is a possible solution, i mean, i can´t made a proper demostration or something. Is like I'm not taking into account the constants that integrals implies.
Are you asking where ##x=e^{rt}## came from?

It's an educated guess as to the form of the solution. You look at ##\frac{d^2x}{dx^2}+\frac{k}{m}x=0##, you see that this can only work if the second time derivative of ##x## is a multiple of ##x##, you remember that ##x=e^{rt}## has this property so you try substituting that into the equation and see if it works. Differential equations are solved this way so often that there's even a word for the initial educated guess as to the form of the solution: "ansatz".
 
  • Like
Likes velvetmist
Nugatory said:
Are you asking where ##x=e^{rt}## came from?

It's an educated guess as to the form of the solution. You look at ##\frac{d^2x}{dx^2}+\frac{k}{m}x=0##, you see that this can only work if the second time derivative of ##x## is a multiple of ##x##, you remember that ##x=e^{rt}## has this property so you try substituting that into the equation and see if it works. Differential equations are solved this way so often that there's even a word for the initial educated guess as to the form of the solution: "ansatz".
Thank you so much! I feel pretty silly now tbqh.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...

Similar threads

Back
Top