What is the period of the loaded tuning fork?

AI Thread Summary
Two identical tuning forks vibrate at 256 Hz, but when one is loaded with wax, it produces 6 beats per second, indicating a frequency change. The loaded fork vibrates at a lower frequency due to the added mass, which affects the restoring force and results in slower vibrations. The relationship between the restoring force and the weight of the fork's tines explains this phenomenon, as the increased mass leads to a decrease in frequency. The discussion clarifies that the loaded fork's frequency is lower because the added mass does not alter the restoring energy but slows down the vibrations. Understanding this principle is crucial for analyzing the effects of mass on oscillating systems.
blue.flake
Messages
11
Reaction score
1
Member advised to use the homework template for posts in the homework sections of PF.
Two identical tuning forks vibrate at 256 Hz. One of them is then loaded with a drop of wax, after which 6 beats/s are heard. The period of the loaded tuning fork is?

So, as the uploaded pictures shows, I did solve the problem, but I'm not sure why the f1 frequency is bigger than f2. I mean how can I be sure which one should I subtract from the other?
1.PNG


edit: yeah i just noticed i messed up the unit for the period, I'm sorry..
 
Physics news on Phys.org
A tuning fork will vibrate at a lower frequency when loaded.
 
thank you, but can you explain to me why exactly?
 
In simple terms, the fork's material has a solid material shape which if deformed, e.g. if a tine is struck, it will tend to "bounce back" to its original shape. This occurs with a restoring force due to the structure and shape of the fork. Each tine of the fork has weight. The relationship between the restoring force and the weight determines the frequency. Adding the wax does not change the way the fork's restoring energy works, it only adds mass to the system. From general knowledge of oscillators mass loaded vibrators such as spring systems or just by thinking about F=M*a (recall M increases but F stays the same) you can generalize that the extra mass will make the tine vibrate slower.
 
thank you so much ^_^
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top