MHB What is the range and inverse of the function y = 1/x?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Range
AI Thread Summary
The function y = 1/x has a range of all real numbers except y = 0, which is confirmed by its graph showing curves in quadrants 1 and 3 that do not intersect the axes. The inverse of the function is also y = 1/x, with a domain of all real numbers except x = 0. This symmetry indicates that the range and domain are related, both excluding zero. The graph visually reinforces that the function approaches but never reaches the axes, validating the range. Understanding this behavior is crucial for novice math learners to grasp the concept of asymptotes in rational functions.
mathdad
Messages
1,280
Reaction score
0
Find the range algebraically.

y = 1/x

Find inverse of y.

x = 1/y

Solve for y.

yx = (1/y)(y)

yx = 1

y = 1/x

f^(-1) x = 1/x

The domain of f^(-1) x is ALL REAL NUMBERS except that x cannot be 0.

So, the range of y = 1/x is ALL REAL NUMBERS except that y cannot be 0.

Correct?
 
Last edited:
Mathematics news on Phys.org
$y = \dfrac{1}{x}$ is a basic parent function whose graph is easily sketched ... so, sketch it and answer your own question.
 
I know what this graph looks like. I've seen it hundreds of times but what does it mean to a novice math learner? There is a curve in quadrants 1 and 3 that does not cross the lines x = 0 and y = 0. The textbook answer is (-infinity, 0) U (0, infinity). What on the graph tells me that this is the correct range?
 
you asked the same question in your other post ...

http://mathhelpboards.com/pre-calculus-21/range-functions-4-a-21775.html#post98495
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top