What is the significance of phase constant in the wave equation?

  • Thread starter Thread starter Sciencer
  • Start date Start date
  • Tags Tags
    Constant Phase
AI Thread Summary
The discussion centers on the confusion surrounding the phase constant in the wave equation, specifically the terms PHI/k and PHI/w. Participants express frustration over the lack of clarity in standard textbooks regarding these terms and their derivation. It is emphasized that the phase constant is independent of the other variables and that the equations can be manipulated to show equivalence. The conversation highlights the importance of understanding how to separate time and distance dependencies in wave equations. Ultimately, the manipulation of the wave equation is deemed straightforward, despite the initial confusion.
Sciencer
Messages
8
Reaction score
0
we have the wave equation as follows with non zero phase constant:


y(x,t) = ym * sin(k( x - PHI/k) - wt)
or

y(x,t) = ym * sin(kx - w(t + PHI / w))

I don't understand where did the PHI /k or PHI / w came from ??

I understand how did we derive the wave equation but I don't understand this part.
 
Physics news on Phys.org
Sciencer said:
we have the wave equation as follows with non zero phase constant:y(x,t) = ym * sin(k( x - PHI/k) - wt)
or

y(x,t) = ym * sin(kx - w(t + PHI / w))

I don't understand where did the PHI /k or PHI / w came from ??

I understand how did we derive the wave equation but I don't understand this part.

You just substitute in and both equation are the same.

But the more basic thing is, I never seen any book write it this way, that is very confusing. The three terms are totally independent. \omega t is the time dependent, kx is distance dependent, and \phi is a phase constant. You don't confuse this more by mixing them together as if they are related.

People usually set either t=0 or x=0 as a reference and generate two separate equations that relate t or x with \phi. With this, you can generate two separate graphs of (y vs t) or (y vs x).
 
Last edited:
I see but what is then the reason for putting it in this form? What is the logic behind it ?
 
I don't see the logic and I never seen any book that presented it this way. I disagree with the book. In fact, I am at this very moment doing a lot of digging and asking questions regarding to these very kind of phasing issue with respect to direction of propagation, been searching through a lot of books and no body tries to put the equation like this way...as if it is not confused enough dealing with phase constant with respects to t and x alone.
 
Last edited:
I don't understand where did the PHI /k or PHI / w came from ??
they just come from simple manipulation,there is nothing special about it.Don't break your head on this.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top