What is the significance of the basis vector e_{11} in a bivector?

  • Thread starter Thread starter Jhenrique
  • Start date Start date
  • Tags Tags
    Basis
Jhenrique
Messages
676
Reaction score
4
What is the basis of a bivector?

For example (see the attachment and http://en.wikipedia.org/wiki/Bivector#Axial_vectors first):
e_{11}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ \end{bmatrix}
or
e_{11}=\begin{bmatrix} 1\\ 0\\ 0\\ \end{bmatrix}
or ##e_{11}## is equal to what?

Thanks!
 

Attachments

  • fda07cfc3c08abc8eebd9075b1cb23dd.png
    fda07cfc3c08abc8eebd9075b1cb23dd.png
    1.5 KB · Views: 464
Physics news on Phys.org
Hi Jhenrique! :smile:
Jhenrique said:
What is the basis of a bivector?

The basis is ##\mathbf{e}_i\wedge \mathbf{e}_j##, for all i ≠ j :wink:

(wikipedia writes that as ##e_{ij}##, which i find confusing :redface:)

For example, the electromagnetic 4-vector (E;B) is:​

##E_x\mathbf{i}\wedge\mathbf{t}+E_y\mathbf{j}\wedge\mathbf{t}+ E_z\mathbf{k}\wedge\mathbf{t} +## ##B_x\mathbf{j}\wedge\mathbf{k}+ B_y\mathbf{k}\wedge\mathbf{i}+ B_z\mathbf{i}\wedge\mathbf{j}##
 
I asked what is e11 in terms of matrix...
 
e11 doesn't exist :confused:

e1 ##\wedge## e1 = 0​
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Back
Top