MHB What is the Simplified Form of the Trigonometric Expression?

AI Thread Summary
The discussion focuses on evaluating the expression $\dfrac{1}{\sin^2 \dfrac{\pi}{10}}+\dfrac{1}{\sin^2 \dfrac{3\pi}{10}}$, with the solution arriving at the value of 12. The approach involves using trigonometric identities and the concept of spread polynomials, particularly for angles that are multiples of each other. A key insight is that $\sin \left(\frac{\pi}{10}\right)$ relates to the Golden Ratio, specifically $\sin \left(\frac{\pi}{10}\right)=\frac{\phi}{2}$. The final derivation shows that $s=\frac{1}{8} \left(3+\sqrt{5}\right)$, confirming the solution. The discussion highlights the utility of spread polynomials in solving such trigonometric problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\dfrac{1}{\sin^2 \dfrac{\pi}{10}}+\dfrac{1}{\sin^2 \dfrac{3\pi}{10}}$.
 
Mathematics news on Phys.org
I would use degrees to solve

we shall use the identity below to solve it

We have

$sin\, 72^0$
$= 2 \cos\, 36^0 \sin\, 36^0$ using sin 2A formula
$= 2 \cos\, 36^0 ( 2\, sin \,18^0cos\ 18^0) $using sin 2A formula again
$= 4\ cos\, 36^0 sin \,18 ^0 sin \,72^0$ as cos18 = sin(90-18) = sin 72
or
$4 \cos \,36^0 sin \,18^0= 1$
or
$\sin\, 54^0 sin\ 18^0 = \frac{1}{4}$
This is in my math blog at Fun with maths: Q13/092) Prove 4 cos 36 sin 18 = 1

another identity
$\cos^2 18^0 - cos^2 36^0 = (\cos \,18^0+ \cos \,36^0)*(\cos\, 18^0 - \cos \,36^0) $
$= \cos\, 9^0 * cos\, 27^0 * 2 *\ sin\, 9^0 * sin \,27 ^0$
$= \sin\, 18^0\ sin \,54^0 = \frac{1}{4}$

hence

$\frac{1}{\sin ^2 18^0} + \frac{1}{\sin ^2 54^0}$
=$\frac{\sin ^2 54^0 + \sin ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
=$\frac{\cos ^2 36^0 + \sin ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
=$\frac{\cos ^2 36^0 + 1- \cos ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
$= 16( \cos^2 36^0 +1 - \cos ^2 18^0)$
$= 16 ( 1- \frac{1}{4})= 12$
 
Here is a "working backward" approach.
kaliprasad's solution is 12 which can be checked (approximately) with a calculator.

To verify that 12 is the solution, I'll try to derive a fact about one of my favorite angles $\theta =\frac{\pi }{10}$ , and the Golden Ratio. That is: $\sin \left(\frac{\pi }{10}\right)=\frac{\phi }{2}$

When solving problems where one angle is a (natural number) multiple another, it is useful to use a "Spread Polynomial". Click Here, for a table of spread polynomials. Let: $\theta =\frac{\pi }{10}$ and $s=\sin ^2(\theta )$

Then $\sin ^2(3 \theta )$= S3(s)
Where: S3(s) = $s(3-4s)^2$

Then the problem can be re-written as...

Given: $\frac{1}{(s (3-4 s))^2}+\frac{1}{s}$ = 12
Prove: $\sqrt{s}=\frac{\phi }{2}$

Solving for s: Click Here
$s=\frac{1}{8} \left(3+\sqrt{5}\right)$

Solving for $\sqrt{s}$:
$\sqrt{s}=\frac{\phi }{2}$ QED
 
RLBrown said:
Here is a "working backward" approach.
kaliprasad's solution is 12 which can be checked (approximately) with a calculator.

To verify that 12 is the solution, I'll try to derive a fact about one of my favorite angles $\theta =\frac{\pi }{10}$ , and the Golden Ratio. That is: $\sin \left(\frac{\pi }{10}\right)=\frac{\phi }{2}$

When solving problems where one angle is a (natural number) multiple another, it is useful to use a "Spread Polynomial". Click Here, for a table of spread polynomials. Let: $\theta =\frac{\pi }{10}$ and $s=\sin ^2(\theta )$

Then $\sin ^2(3 \theta )$= S3(s)
Where: S3(s) = $s(3-4s)^2$

Then the problem can be re-written as...

Given: $\frac{1}{(s (3-4 s))^2}+\frac{1}{s}$ = 12
Prove: $\sqrt{s}=\frac{\phi }{2}$

Solving for s: Click Here
$s=\frac{1}{8} \left(3+\sqrt{5}\right)$

Solving for $\sqrt{s}$:
$\sqrt{s}=\frac{\phi }{2}$ QED

hello Brown. Thanks for introducing me to spread polynomial

This is completely new to me.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
972
Replies
1
Views
1K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
2
Views
973
Back
Top