MHB What is the Simplified Form of This Trigonometric Identity?

  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The discussion centers on simplifying the trigonometric identity $\sin(A) + \sin(A + \frac{2\pi}{3}) + \sin(A + \frac{4\pi}{3}) = 0$. Participants focus on breaking down the left-hand side using angle addition formulas and identifying the contributions of the sine and cosine terms. Key calculations involve evaluating $1 + \cos(\frac{2\pi}{3}) + \cos(\frac{4\pi}{3})$ and $\sin(\frac{2\pi}{3}) + \sin(\frac{4\pi}{3})$. The goal is to verify the identity through these simplifications. Ultimately, the identity holds true, confirming the original equation.
Silver Bolt
Messages
8
Reaction score
0
$\sin\left({A}\right)+\sin\left({A+\frac{2\pi}{3}}\right)+\sin\left({A+\frac{4\pi}{3}}\right)=0$

$L.H.S=\sin\left({A}\right)+\left(\sin\left({A}\right)\cos\left({\frac{2\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{2\pi}{3}}\right)\right)+\left(\sin\left({A}\right)\cos\left({\frac{4\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{4\pi}{3}}\right)\right) $

From there?
 
Last edited:
Mathematics news on Phys.org
You've only given an expression...what is the actual identity to be verified?
 
Corrected now
 
Silver Bolt said:
$\sin\left({A}\right)+\sin\left({A+\frac{2\pi}{3}}\right)+\sin\left({A+\frac{4\pi}{3}}\right)=0$

$L.H.S=\sin\left({A}\right)+\left(\sin\left({A}\right)\cos\left({\frac{2\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{2\pi}{3}}\right)\right)+\left(\sin\left({A}\right)\cos\left({\frac{4\pi}{3}}\right)+\cos\left({A}\right)\sin\left({\frac{4\pi}{3}}\right)\right) $

From there?

I would write the LHS as:

$$\sin(A)\left(1+\cos\left(\frac{2\pi}{3}\right)+\cos\left(\frac{4\pi}{3}\right)\right)+\cos(A)\left(\sin\left(\frac{2\pi}{3}\right)+\sin\left(\frac{4\pi}{3}\right)\right)$$

Now, what are:

$$1+\cos\left(\frac{2\pi}{3}\right)+\cos\left(\frac{4\pi}{3}\right)=?$$

$$\sin\left(\frac{2\pi}{3}\right)+\sin\left(\frac{4\pi}{3}\right)=?$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
1K
Replies
11
Views
2K
Replies
2
Views
974
Replies
1
Views
1K
Replies
11
Views
2K
Replies
1
Views
1K
Back
Top