- #1
Geometrick
- 42
- 0
Homework Statement
Show that the set of all 2x2 matrices of rank 1 is a submanifold of R^4
Homework Equations
The Attempt at a Solution
The hint in the book was to show that the determinant function is a submersion on the manifold of nonzero 2x2 matrix M(2) - 0. This is easy to show. So I have that det^{-1}(0) \subset M(2) - 0 is a 3 dimensional sub manifold of M(2) - 0. But how do I show that it's a submanifold of R^4?
I know that M(2) - 0 is an open subset of R^4... I get the intuitive idea, but I don't see how to write a rigorous proof. How do I show that the set of 2x2 matrices of rank 1 is a submanifold of R^4 if I just showed that it is a submanifold of M(2) - 0?