- #36
etotheipi
Vanadium 50 said:Draw the field lines (which will be radial) outside the ring. Make the ring smaller. Do I have any more field lines? If so, where did they come from? Do I have less? If so, where did they go? Continue until the ring is a point.
It works for a 3D sphere, yes, but not for a 2D ring. There is not the necessary symmetry of field lines, we cannot yet tell whether the field strength is uniform in all directions.
For a 3D sphere, spherical symmetry implies uniform density of field lines emanating from the sphere. Theorem of Gauss tells me that, with a suitable spherical domain of integration $$\int_S \vec{E} \cdot d\vec{A} = 4\pi r^2 E= \frac{Q}{\epsilon_0}$$ and hence ##E = \frac{Q}{4\pi \epsilon_0 r^2}##. But now let us consider a 2D ring. What surface are you integrating over? What symmetry do you invoke to ensure uniformity of field lines over this surface?