MHB What Is the Value of \(a_{1000}\) in This Sequence?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
AI Thread Summary
The discussion revolves around determining the value of \(a_{1000}\) in a specific sequence defined by recurrence relations. The sequence starts with \(a_1=1\) and follows the rules \(a_{3n+1}=2a_n+1\) and \(a_{n+1}\ge a_n\). Initial calculations suggest that \(63 \le a_{1000} \le 127\), with further deductions leading to \(a_{1000} = 127\). The analysis also highlights inconsistencies with the additional information that \(a_{2001} = 200\), suggesting that the sequence's growth may not align with the expected pattern. Ultimately, the conclusion is that \(a_{1000} = 127\) based on the established patterns and calculations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi members of the forum,

I am unable to determine the value of $$a_{1000}$$ in the problem as stated below because I think I failed to observe another useful pattern of the given sequence.

Could anyone please help me out with this problem? Thanks in advance.

Problem:
A sequence $$a_1$$, $$a_2$$, $$a_3,\;\cdots$$ of positive integers satisfies the following properties:

$$a_1=1$$

$$a_{3n+1}=2a_n+1$$

$$a_{n+1}\ge a_n$$

$$a_{2001}=200$$

Find the value of $$a_{1000}$$
 
Physics news on Phys.org
anemone said:
Hi members of the forum,

I am unable to determine the value of $$a_{1000}$$ in the problem as stated below because I think I failed to observe another useful pattern of the given sequence.

Could anyone please help me out with this problem? Thanks in advance.

Problem:
A sequence $$a_1$$, $$a_2$$, $$a_3,\;\cdots$$ of positive integers satisfies the following properties:

$$a_1=1$$

$$a_{3n+1}=2a_n+1$$

$$a_{n+1}\ge a_n$$

$$a_{2001}=200$$

Find the value of $$a_{1000}$$

The subsequence obeys to the difference equation...

$\displaystyle a_{k+1} = 2\ a_{k}+1,\ a_{1}=1$ (1)

... the solution of which is...

$\displaystyle a_{i}= 2^{k}-1$ (2)

... and the index obeys to the difference equation...

$i_{k+1}= 3\ i_{k}+1,\ i_{1}=1$ (3)

... the solution of which is...

$i_{k} = \frac{1}{2} (3^{k}-1)$ (4)

Now we plot the sequence $a_{i}$ ...

$\displaystyle a_{1}=1,\ a_{4}= 3,\ a_{13}= 7,\ a_{40}= 15,\ a_{121}= 31,\ a_{364} = 63,\ a_{1093}= 127,\ ...$ (5)

Now, observing (5), all what we can say about $a_{1000}$ is [for the moment...] $63 \le a_{1000} \le 127$ ...

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
The subsequence obeys to the difference equation...

$\displaystyle a_{k+1} = 2\ a_{k}+1,\ a_{1}=1$ (1)

... the solution of which is...

$\displaystyle a_{i}= 2^{k}-1$ (2)

... and the index obeys to the difference equation...

$i_{k+1}= 3\ i_{k}+1,\ i_{1}=1$ (3)

... the solution of which is...

$i_{k} = \frac{1}{2} (3^{k}-1)$ (4)

Now we plot the sequence $a_{i}$ ...

$\displaystyle a_{1}=1,\ a_{4}= 3,\ a_{13}= 7,\ a_{40}= 15,\ a_{121}= 31,\ a_{364} = 63,\ a_{1093}= 127,\ ...$ (5)

Now, observing (5), all what we can say about $a_{1000}$ is [for the moment...] $63 \le a_{1000} \le 127$ ...

Kind regards

$\chi$ $\sigma$

Hi chisigma, thank you so much for replying to this problem. But do you mean to say we could in the next step to determine what the integer value of $$a_{1000} is$$?:confused:
 
Given that $a_{2001} = 200$, it follows that $a_{2002}\geqslant 200$. But $2002 = 3*667 + 1$, so $a_{2002} = 2a_{667}+1$. Therefore $2a_{667}+1\geqslant 200$, and $a_{667}\geqslant \frac12(199) = 99.5.$ But $a_{667}$ is an integer, and so $a_{667}\geqslant 100$. Repeating that chain of deductions, you see that $a_{223} \geqslant 50$, $a_{74} \geqslant 25$, $a_{25}\geqslant 12$, $a_8\geqslant7.$ But $a_{13}=7$ (see chisigma's post above), and so $a_8\leqslant7.$ Thus $a_8=7$, and in fact $a_n=7$ for each $n$ between $8$ and $13$ inclusive.

Next, $3*8+1=25$, so $a_{25} = 2a_8+1 = 15$, and in fact $a_n=15$ for each $n$ between $25$ and $40$ inclusive. Continue in that way to see that $a_n=31$ for each $n$ between $76$ and $121$, $a_n=63$ for each $n$ between $229$ and $364$, $a_n=127$ for each $n$ between $668$ and $1093$. In particular, $a_{1000} = 127.$
 
anemone said:
Hi chisigma, thank you so much for replying to this problem. But do you mean to say we could in the next step to determine what the integer value of $$a_{1000} is$$?:confused:

We can extrapolate the result writing...

$\displaystyle \ln (y+1) \sim \ln 2x \frac{\ln 2}{\ln 3} \sim .6309 \ln 2x$ (1)

... and that leads to...

$a_{31} \sim 30.9$

$a_{364} \sim 62.9$

$a_{1093} \sim 126,9$

... so that we could conclude that...

$a_{1000} \sim 119.9$

Unfortunately the 'extra information' $a_{2001}= 200$ is not coherent with (1) because it should be $a_{2001} \sim 186.4$ (Thinking)...

Kind regards

$\chi$ $\sigma$
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...

Similar threads

Replies
2
Views
3K
Replies
9
Views
3K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
6
Views
3K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top