I What proof do we have that the universe is homogenous?

AI Thread Summary
The discussion centers on the concepts of isotropy and homogeneity in the universe, as defined in a cosmology book. Isotropy means the universe appears the same in all directions at large scales, which is supported by current observations from galaxy surveys and the Cosmic Microwave Background (CMB). Homogeneity, on the other hand, suggests that the universe looks the same from any location at large distances, but proving this is more complex. It is suggested that homogeneity is a postulate, accepted as a fundamental assumption until proven otherwise, as there is currently no evidence against it. The combination of isotropy and the Copernican principle supports the idea that if the universe is isotropic from one point, it must be isotropic from all points, leading to the conclusion of homogeneity.
Phys12
Messages
351
Reaction score
42
TL;DR Summary
Definition given in a book I am following says that a universe that is homogenous looks the same from any location on large enough scales. How do we know this is true for our universe?
In the book, it states that a universe is isotropic if it looks the same regardless of which direction you look at large enough scales. This seems fairly easy to prove these days with observations from galaxy surveys and the CMB. However, how can we possibly prove that the university is homogenous (definition: the universe looks the same at large enough distances regardless of your location)?
 
Space news on Phys.org
Like you said, we make observations. We can measure the distances to galaxies along with their direction and from that build a model and look at the distribution of galaxies at different scales. Obviously our observations are limited to our own observable universe, so there's a limit to how well we can verify the homogeneity at larger and larger scales.
 
Phys12 said:
Summary:: Definition given in a book I am following says that a universe that is homogenous looks the same from any location on large enough scales. How do we know this is true for our universe?

In the book, it states that a universe is isotropic if it looks the same regardless of which direction you look at large enough scales. This seems fairly easy to prove these days with observations from galaxy surveys and the CMB. However, how can we possibly prove that the university is homogenous (definition: the universe looks the same at large enough distances regardless of your location)?
In physics you can't prove something like this. It must be a postulate - something you take as a fundamental assumption on which to base your theories. If the assumption is wrong then eventually you will find experimental evidence of this. What you can say is that currently there is no evidence for any lack of homegeneity or isotropy in the universe.
 
  • Like
Likes Vanadium 50 and Phys12
Phys12 said:
In the book, it states that a universe is isotropic if it looks the same regardless of which direction you look at large enough scales. This seems fairly easy to prove these days with observations from galaxy surveys and the CMB. However, how can we possibly prove that the university is homogenous (definition: the universe looks the same at large enough distances regardless of your location)?
As you said, we can observe that universe looks isotropic from our perspective. Now if you accept that there is nothing special about our place in the universe and that it also looks isotropic from other places, you can say that universe is homogeneous.
I like this illustration taken from Weinberg's "The First Three Minutes", explaining why the universe is homogeneous when it is isotropic:

IMG_20200806_080318.jpg
 
  • Like
Likes Phys12
Understood, thank y'all so much!

Read this line 8 minutes after posting the above message:
""
Isotropy around any point in the universe, such as your navel, combined with the Copernican principle, implies isotropy around every point in the universe; and isotropy around every point in the universe does imply homogeneity
""

It's from Barbara Ryden's book, by the way, on intro to cosmology.
 
Last edited:
  • Like
Likes lomidrevo
Abstract The Event Horizon Telescope (EHT) has significantly advanced our ability to study black holes, achieving unprecedented spatial resolution and revealing horizon-scale structures. Notably, these observations feature a distinctive dark shadow—primarily arising from faint jet emissions—surrounded by a bright photon ring. Anticipated upgrades of the EHT promise substantial improvements in dynamic range, enabling deeper exploration of low-background regions, particularly the inner shadow...
Back
Top