When can Ordinal Variables be treated as Interval Variables?

In summary: Yes. I like the cumulative family with the logit or probit link in the brms package in R. With the probit link the latent variable is assumed to have a standard normal distribution.
  • #1
fog37
1,569
108
TL;DR Summary
Understanding when ok to treat ordinal variables treated as interval variables
Hello,

Ordinal variables (see Likert scale) can be labelled using numbers and ranked by those numbers. However, the difference between category 2 and category 3 may not be exactly be the same as the difference between category 4 and 5. That said, I noticed that in social science ordinal variables are sometimes approximately treated as if they were numerical predictors if the ordinal variable has many levels...Is that a correct approach? What justifies that? I did some reading and found a variety of opinions on the topic...

Thanks
 
Physics news on Phys.org
  • #2
fog37 said:
TL;DR Summary: Understanding when ok to treat ordinal variables treated as interval variables

What justifies that?
People did it previously in published papers. Doing it currently doesn’t sink a paper.

It isn’t a great justification. As you say, there are a variety of opinions on the topic. Including ones that are supportive of the practice.

So it will continue to be done for the time being. Most reviewers are statistically unsophisticated, and ordinal methods are less familiar and often less powerful.
 
  • Like
Likes fog37
  • #3
Dale said:
People did it previously in published papers. Doing it currently doesn’t sink a paper.

It isn’t a great justification. As you say, there are a variety of opinions on the topic. Including ones that are supportive of the practice.

So it will continue to be done for the time being. Most reviewers are statistically unsophisticated, and ordinal methods are less familiar and often less powerful.
It seems to me that the issue is more serious if we treat a response/outcome variable that is ordinal as numerical and maybe less a serious issue if the ordinal variable is an independent variable and we treat it as an interval variable...
 
  • Like
Likes Dale
  • #4
fog37 said:
TL;DR Summary: Understanding when ok to treat ordinal variables treated as interval variables

Hello,

Ordinal variables (see Likert scale) can be labelled using numbers and ranked by those numbers. However, the difference between category 2 and category 3 may not be exactly be the same as the difference between category 4 and 5. That said, I noticed that in social science ordinal variables are sometimes approximately treated as if they were numerical predictors if the ordinal variable has many levels...Is that a correct approach? What justifies that? I did some reading and found a variety of opinions on the topic...

Thanks
"Is that a correct approach?"
No. The fact that something is [or has been] widely done does not make it valid.
 
  • Like
Likes FactChecker
  • #5
IMO, there should be some subject-matter logic behind the relative numerical values in order to justify that approach. In the cases you refer to, you should base your evaluation on how well they justified the scaling. There may be very good reasons for unequal spacing, but there might not be. I would hope that any assignment of unequal spacing in a peer-reviewed publication was done for some subject-matter, logical reason.
 
  • #6
Just a point: binning continuous data can be a very bad thing to do and you're losing information: care hast to be take even in the best of situations. Imagine a data set that is actually bimodal (or multimodal): a histogram with too few bins probably won't detect it. Using income data rounded to tens of thousands can hide evidence of inflation that would be detected from the raw values.

Frank Harrell has a very good illustration of problems at the following link.

https://discourse.datamethods.org/t/categorizing-continuous-variables/3402
 
  • #7
statdad said:
binning continuous data can be a very bad thing to do and you're losing information: care hast to be take even in the best of situations. Imagine a data set that is actually bimodal (or multimodal): a histogram with too few bins probably won't detect it.
Binning can also produce a bimodal discrete distribution where the underlying continuous distribution is not bimodal.

However, very often with psychological data you are working with latent variables so you have no choice but to do an unknown binning on the unobservable latent scale.
 
  • #8
Dale said:
Binning can also produce a bimodal discrete distribution where the underlying continuous distribution is not bimodal.

However, very often with psychological data you are working with latent variables so you have no choice but to do an unknown binning on the unobservable latent scale.
There are methods too, for Latent variables, that assume observed data originate from a continuous,
iirc (wolg) normal variables. let me see if I can find refs.
 
  • #9
WWGD said:
There are methods too, for Latent variables, that assume observed data originate from a continuous,
iirc (wolg) normal variables. let me see if I can find refs.
Yes. I like the cumulative family with the logit or probit link in the brms package in R. With the probit link the latent variable is assumed to have a standard normal distribution.
 
  • Like
Likes WWGD

FAQ: When can Ordinal Variables be treated as Interval Variables?

What are ordinal variables and interval variables?

Ordinal variables are categorical variables with a clear ordering of the categories, but the intervals between the categories are not necessarily equal. Examples include rankings like "satisfied," "neutral," and "dissatisfied." Interval variables, on the other hand, have both ordered categories and equal intervals between those categories, like temperature in Celsius or Fahrenheit.

When is it appropriate to treat ordinal variables as interval variables?

It is appropriate to treat ordinal variables as interval variables when the assumption of equal intervals between the categories is reasonable. This often depends on the context and the specific variable in question. For example, Likert scale responses (e.g., 1 to 5 scales) are often treated as interval variables in social science research, although this practice is debated.

What are the risks of treating ordinal variables as interval variables?

The main risk is that the analysis may produce misleading results if the intervals between the categories are not truly equal. This can lead to incorrect conclusions and affect the validity of the research findings. It is important to carefully consider whether the assumption of equal intervals is justified.

Are there statistical tests to determine if an ordinal variable can be treated as an interval variable?

There are no definitive statistical tests to determine if an ordinal variable can be treated as an interval variable. However, researchers often use methods like checking for linearity or employing non-parametric tests as a preliminary step. Ultimately, the decision is based on theoretical justification and the specific context of the research.

Can you provide an example where treating an ordinal variable as an interval variable is justified?

An example is the use of Likert scales in survey research. When respondents rate their agreement with statements on a scale from 1 (strongly disagree) to 5 (strongly agree), researchers often treat these ratings as interval data. This is justified when the scale is assumed to represent equal intervals of agreement, allowing for more sophisticated statistical analyses like regression.

Similar threads

Replies
5
Views
3K
Replies
3
Views
1K
Replies
1
Views
2K
Replies
5
Views
3K
Replies
16
Views
2K
Back
Top