When Is Node Voltage Not Equal to Voltage Source?

AI Thread Summary
Node voltage may not equal the voltage source when other circuit elements, such as resistors or dependent sources, are present, affecting the potential difference. Voltage division can be applied when resistors are in series across a voltage source, but care must be taken with more complex circuits. It is essential to analyze the entire circuit to determine the correct voltages, especially when parallel resistances are involved. Voltage division can still apply in closed loops, even if a branch leads to an output or interface. Understanding these principles allows for accurate calculations of output voltage in various circuit configurations.
skyfire101
Messages
5
Reaction score
0
when does the voltage of a node with a branch attached to a voltage source not equal the voltage of the voltage source?
This question has been driving me crazy because i am unsure when i am able to apply voltage division to portions of a circuit i try to analyze.
I know the potiential difference across a voltage source always needs to be equal to the value of the voltage source but, if the branch coming out of a voltage source is not at the same potiental as the voltage source how can i apply voltage division?
Any help is much appreciated, thank you
 
Engineering news on Phys.org
Can you draw a diagram?

You can usually apply voltage division if you have resistors in series across a voltage source, provided there is no other power source in the circuit.

However, more complex arrangements mean you have to use analysis to get the voltages.
 
I'm really just looking for a way to apply to apply the rule in general, or to portions of a circuit. I know that voltage division is used mostly for resistances in series, however there are ways to compensate for parallel resistances to. So i was wondering to what scope voltage division applies. My txtbook has examples where it applies it to portions of a circuit, but doesn't explain why it works in said examples.

Is it accurate so say that voltage division still applies to a closed loop even when one branch leads to some interface or output?
In my attachment is the circuit of suspect, it asks to find Vo in terms of input Vs, I can only match the equation they get by using voltage division on the loop containg Vs
i.e
Ix*Rp = Vs*Rp/(Rs+Rp)
(Rp on left gets canceled)

and then sub Ix into another equation that uses volt division on the loop with a dependent source.
i.e
Vo = (-rIx)*RL/(RC + RL)
(sub previous eqn into Ix)
*above Vo should be "+" and below Vo "-" sign
 

Attachments

  • pic.gif
    pic.gif
    6.2 KB · Views: 521
Last edited:
You can get the current in the left circuit with Vs / (Rs + Rp). call this current I1

The current source gives this current times r

So this current flows in Rc and RL.

The voltage drop across RL is then I1 * r * RL

Substituting for I1
The output voltage = {Vs / (Rs + Rp)} * r * RL
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Back
Top