- #1
olgerm
Gold Member
- 533
- 35
All tensors here are contravariant.
from maxwell equation in terms of E-field we know that:
$$\rho=\frac{\partial E_1}{\partial x_1}+\frac{\partial E_2}{\partial x_2}+\frac{\partial E_3}{\partial x_3}$$
from maxwell equation in terms of magnetic 4-potential in lorenz gauge we know that
$$-\rho=-\frac{\partial^2 A_0}{\partial x_0^2}+\frac{\partial^2 A_0}{\partial x_1^2}+\frac{\partial^2 A_0}{\partial x_2^2}+\frac{\partial^2 A_0}{\partial x_3^2}$$
we know how electric field is related to (contravariant) EM-tensor:
$$E_1=F_{10}$$
$$E_2=F_{20}$$
$$E_3=F_{30}$$
we know how EM-tensor is related to magnetic 4-potential:
$$F_{10}=\frac{\partial A_0}{\partial x_1}-\frac{\partial A_1}{\partial x_0}$$
$$F_{20}=\frac{\partial A_0}{\partial x_2}-\frac{\partial A_2}{\partial x_0}$$
$$F_{30}=\frac{\partial A_0}{\partial x_3}-\frac{\partial A_3}{\partial x_0}$$
by combining these equations we get:
$$\rho=\frac{\partial E_1}{\partial x_1}+\frac{\partial E_2}{\partial x_2}+\frac{\partial E_3}{\partial x_3}$$
$$\rho=\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
$$E_1=F_{10}$$
$$E_2=F_{20}$$
$$E_3=F_{30}$$
$$F_{10}=\frac{\partial A_1}{\partial x_0}-\frac{\partial A_0}{\partial x_1}$$
$$F_{20}=\frac{\partial A_2}{\partial x_0}-\frac{\partial A_0}{\partial x_2}$$
$$F_{30}=\frac{\partial A_3}{\partial x_0}-\frac{\partial A_0}{\partial x_3}$$
simplifying:
$$\frac{\partial E_1}{\partial x_1}+\frac{\partial E_2}{\partial x_2}+\frac{\partial E_3}{\partial x_3}=\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
$$E_1=\frac{\partial A_1}{\partial x_0}-\frac{\partial A_0}{\partial x_1}$$
$$E_2=\frac{\partial A_2}{\partial x_0}-\frac{\partial A_0}{\partial x_2}$$
$$E_3=\frac{\partial A_3}{\partial x_0}-\frac{\partial A_0}{\partial x_3}$$simplifying:
$$\frac{\partial }{\partial x_1}(\frac{\partial A_1}{\partial x_0}-\frac{\partial A_0}{\partial x_1})+
\frac{\partial}{\partial x_2}(\frac{\partial A_2}{\partial x_0}-\frac{\partial A_0}{\partial x_2})+
\frac{\partial}{\partial x_3}(\frac{\partial A_3}{\partial x_0}-\frac{\partial A_0}{\partial x_3})=
\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
simplifying:
$$\frac{\partial^2 A_1}{\partial x_0*\partial x_1}-\frac{\partial^2 A_0}{\partial x_1^2}+
\frac{\partial^2 A_2}{\partial x_0*\partial x_2}-\frac{\partial^2 A_0}{\partial x_2^2}+
\frac{\partial^2 A_3}{\partial x_0*\partial x_3}-\frac{\partial^2 A_0}{\partial x_3^2}=
\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
simplifying:
$$
-\frac{\partial^2 A_0}{\partial x_0^2}+
\frac{\partial^2 A_1}{\partial x_0*\partial x_1}+
\frac{\partial^2 A_2}{\partial x_0*\partial x_2}+
\frac{\partial^2 A_3}{\partial x_0*\partial x_3}=0
$$
simplifying:
$$\frac{\partial}{\partial x_0}(
-\frac{\partial A_0}{\partial x_0}+
\frac{\partial A_1}{\partial x_1}+
\frac{\partial A_2}{\partial x_2}+
\frac{\partial A_3}{\partial x_3})=0$$
is this result correct?
This seems wrong, but I do not understand what wrong assumptions or derivation mistakes I did.
using lorenz gauge condition
$$\frac{\partial A_1}{\partial x_1}+\frac{\partial A_2}{\partial x_2}+\frac{\partial A_3}{\partial x_3}+\frac{\partial^2 A_0}{\partial x_0}=0$$
we can also derive that
$$\frac{\partial^2 A_0}{\partial x_0^2}=0$$
and
$$\frac{\partial}{\partial x_0}(
\frac{\partial A_1}{\partial x_1}+
\frac{\partial A_2}{\partial x_2}+
\frac{\partial A_3}{\partial x_3})=0$$
and using maxwell equation in terms of magnetic 4-potential in lorenz gauge again also:
$$-\rho=\frac{\partial^2 A_0}{\partial x_1^2}+\frac{\partial^2 A_0}{\partial x_2^2}+\frac{\partial^2 A_0}{\partial x_3^2}$$
from maxwell equation in terms of E-field we know that:
$$\rho=\frac{\partial E_1}{\partial x_1}+\frac{\partial E_2}{\partial x_2}+\frac{\partial E_3}{\partial x_3}$$
from maxwell equation in terms of magnetic 4-potential in lorenz gauge we know that
$$-\rho=-\frac{\partial^2 A_0}{\partial x_0^2}+\frac{\partial^2 A_0}{\partial x_1^2}+\frac{\partial^2 A_0}{\partial x_2^2}+\frac{\partial^2 A_0}{\partial x_3^2}$$
we know how electric field is related to (contravariant) EM-tensor:
$$E_1=F_{10}$$
$$E_2=F_{20}$$
$$E_3=F_{30}$$
we know how EM-tensor is related to magnetic 4-potential:
$$F_{10}=\frac{\partial A_0}{\partial x_1}-\frac{\partial A_1}{\partial x_0}$$
$$F_{20}=\frac{\partial A_0}{\partial x_2}-\frac{\partial A_2}{\partial x_0}$$
$$F_{30}=\frac{\partial A_0}{\partial x_3}-\frac{\partial A_3}{\partial x_0}$$
by combining these equations we get:
$$\rho=\frac{\partial E_1}{\partial x_1}+\frac{\partial E_2}{\partial x_2}+\frac{\partial E_3}{\partial x_3}$$
$$\rho=\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
$$E_1=F_{10}$$
$$E_2=F_{20}$$
$$E_3=F_{30}$$
$$F_{10}=\frac{\partial A_1}{\partial x_0}-\frac{\partial A_0}{\partial x_1}$$
$$F_{20}=\frac{\partial A_2}{\partial x_0}-\frac{\partial A_0}{\partial x_2}$$
$$F_{30}=\frac{\partial A_3}{\partial x_0}-\frac{\partial A_0}{\partial x_3}$$
simplifying:
$$\frac{\partial E_1}{\partial x_1}+\frac{\partial E_2}{\partial x_2}+\frac{\partial E_3}{\partial x_3}=\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
$$E_1=\frac{\partial A_1}{\partial x_0}-\frac{\partial A_0}{\partial x_1}$$
$$E_2=\frac{\partial A_2}{\partial x_0}-\frac{\partial A_0}{\partial x_2}$$
$$E_3=\frac{\partial A_3}{\partial x_0}-\frac{\partial A_0}{\partial x_3}$$simplifying:
$$\frac{\partial }{\partial x_1}(\frac{\partial A_1}{\partial x_0}-\frac{\partial A_0}{\partial x_1})+
\frac{\partial}{\partial x_2}(\frac{\partial A_2}{\partial x_0}-\frac{\partial A_0}{\partial x_2})+
\frac{\partial}{\partial x_3}(\frac{\partial A_3}{\partial x_0}-\frac{\partial A_0}{\partial x_3})=
\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
simplifying:
$$\frac{\partial^2 A_1}{\partial x_0*\partial x_1}-\frac{\partial^2 A_0}{\partial x_1^2}+
\frac{\partial^2 A_2}{\partial x_0*\partial x_2}-\frac{\partial^2 A_0}{\partial x_2^2}+
\frac{\partial^2 A_3}{\partial x_0*\partial x_3}-\frac{\partial^2 A_0}{\partial x_3^2}=
\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
simplifying:
$$
-\frac{\partial^2 A_0}{\partial x_0^2}+
\frac{\partial^2 A_1}{\partial x_0*\partial x_1}+
\frac{\partial^2 A_2}{\partial x_0*\partial x_2}+
\frac{\partial^2 A_3}{\partial x_0*\partial x_3}=0
$$
simplifying:
$$\frac{\partial}{\partial x_0}(
-\frac{\partial A_0}{\partial x_0}+
\frac{\partial A_1}{\partial x_1}+
\frac{\partial A_2}{\partial x_2}+
\frac{\partial A_3}{\partial x_3})=0$$
is this result correct?
This seems wrong, but I do not understand what wrong assumptions or derivation mistakes I did.
using lorenz gauge condition
$$\frac{\partial A_1}{\partial x_1}+\frac{\partial A_2}{\partial x_2}+\frac{\partial A_3}{\partial x_3}+\frac{\partial^2 A_0}{\partial x_0}=0$$
we can also derive that
$$\frac{\partial^2 A_0}{\partial x_0^2}=0$$
and
$$\frac{\partial}{\partial x_0}(
\frac{\partial A_1}{\partial x_1}+
\frac{\partial A_2}{\partial x_2}+
\frac{\partial A_3}{\partial x_3})=0$$
and using maxwell equation in terms of magnetic 4-potential in lorenz gauge again also:
$$-\rho=\frac{\partial^2 A_0}{\partial x_1^2}+\frac{\partial^2 A_0}{\partial x_2^2}+\frac{\partial^2 A_0}{\partial x_3^2}$$
Last edited: