MHB Where is the Center of Mass of a Thin Plate with Given Boundaries?

AI Thread Summary
The discussion focuses on calculating the center of mass for a thin plate with a density of 3, bounded by the lines x=0, y=x, and the parabola y=2-x^2 in the first quadrant. The mass is computed using double integrals, leading to a total mass of 7/2. The moments M_x and M_y are calculated to find the coordinates of the center of mass, resulting in \(\bar{x} = \frac{5}{14}\) and \(\bar{y} = \frac{38}{35}\). Participants emphasize the importance of accurately sketching the bounded area to avoid confusion in calculations. The final confirmed center of mass coordinates are \(\bar{x} = \frac{5}{14}\) and \(\bar{y} = \frac{38}{35}\).
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{Find the center of mass of a thin plate of density}$
$\textsf{ $\delta=3$ bounded by the lines $x=0, y=x$, and the parabola
$y=2-x^2$ in the $Q1$}$
$\begin{array}{llcr}\displaystyle
&\textit{Mass}\\
&&\displaystyle M=\iint\limits_{R}\delta \, dA\\
&\textit{First Moments}\\
&&\displaystyle M_y=\iint\limits_{R}x\delta \, dA
&\displaystyle M_x=\iint\limits_{R}y\delta \, dA\\
&\textit{Center of mass}\\
&&\displaystyle\bar{x}=\displaystyle\frac{M_y}{M},
\displaystyle\bar{y}=\displaystyle\frac{M_x}{M}\\
\\
&&\color{red}
{\displaystyle \, \bar{x}=\frac{5}{14},
\bar{y}=\displaystyle\frac{38}{35}}\\
\end{array}$ok I just barely had to time to post this
equations are just from reference
red is answer
 
Mathematics news on Phys.org
Ok I'm starting over on this a small step at a time...

$\textsf{Find the center of mass of a thin plate of density}\\$
$\textsf{$\delta=3$ bounded by the lines $x=0, y=x$, and the parabola
$y=2-x^2$ in $Q1$}\\$
\begin{align*}\displaystyle
M&=\int_{0}^{\sqrt{2}}\int_{2-x^2}^{1}3 \, dy \, dx\\
&=3\int_{0}^{\sqrt{2}}\biggr[y\biggr]_{y=2-x^2}^{y=1}\, dx
=3\int_{0}^{\sqrt{2}}(x^2-1) \, dx
=3\biggr[\frac{x^3}{3}-x\biggr]_0^{\sqrt{2}}=\sqrt{2}\\
M_y&=\int_{0}^{\sqrt{2}}\int_{2-x^2}^{1} \, dy \, dx
=\int_{0}^{\sqrt{2}}\biggr[y\biggr]_{y=2-x^2}^{y=1}\, dx\\
&=\int_{0}^{\sqrt{2}}(x^2-1) \, dx = -\sqrt{2}\\
\end{align*}

something isn't happening right!


$\textsf{the answer utimately is:}\\$
$\color{red}{\, \bar{x}=\displaystyle\frac{5}{14},\bar{y}=\frac{38}{35}}$
 
Last edited:
The first thing I would do is sketch the bounded area:

View attachment 7772

Now, let's compute the mass (noting that the curves $y=x$ and $y=2-x^2$ intersect at $x=1$ in QI):

$$m=\rho A=3\int_{0}^{1}\int_{x}^{2-x^2}\,dy\,dx=3\int_{0}^{1}2-x-x^2\,dx=3\left(2-\frac{1}{2}-\frac{1}{3}\right)=\frac{7}{2}$$

Next, let's compute the moments of the lamina:

$$M_x=3\int_{0}^{1}\int_{x}^{2-x^2}y\,dy\,dx=\frac{3}{2}\int_{0}^{1}\left(2-x^2\right)^2-x^2\,dx=\frac{3}{2}\int_{0}^{1}x^4-5x^2+4\,dx=\frac{19}{5}$$

$$M_y=3\int_{0}^{1}x\int_{x}^{2-x^2}\,dy\,dx=3\int_{0}^{1}2x-x^2-x^3\,dx=\frac{5}{4}$$

Hence:

$$\overline{x}=\frac{M_y}{m}=\frac{\frac{5}{4}}{\frac{7}{2}}=\frac{5}{14}$$

$$\overline{y}=\frac{M_x}{m}=\frac{\frac{19}{5}}{\frac{7}{2}}=\frac{38}{35}$$
 

Attachments

  • karush_com_001.png
    karush_com_001.png
    3.2 KB · Views: 135

Attachments

  • Capture+_2018-02-12-17-31-00-1.png
    Capture+_2018-02-12-17-31-00-1.png
    5.1 KB · Views: 129
karush said:
$\textsf{Find the center of mass of a thin plate of density}$
$\textsf{ $\delta=3$ bounded by the lines $\color{red}{x=0}$, $ y=x$, and the parabola
$y=2-x^2$ in the $Q1$}$

$\color{red}{x=0}$ is the y-axis as shown in Mark’s sketch, not the x-axis as shown in your sketch.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top