- #36
etotheipi
Mhm. This is turning into something philosophical and uninteresting, but I might as well say that in my opinion you are looking at things in the wrong way. Classical mechanics is fundamentally a mathematical structure, a study of certain differential equations, differential and symplectic geometry, et cetera.
In the context of this discussion, the mathematical concept is one of a Galilean co-ordinate chart ##\varphi: A^4 \longrightarrow \mathbf{R} \times \mathbf{R}^3##, where ##A^4 \cong \mathbf{R}^4## is an four-dimensional affine space. In this chart one can describe motions of a system of ##n = N/3## particles by a function ##\boldsymbol{x} : I \longrightarrow \mathbf{R}^N## where ##I \subseteq \mathbf{R}##. The acceleration of the system is nothing but the second derivative ##\ddot{\boldsymbol{x}}(t_0) = \mathrm{d}^2 \boldsymbol{x} / \mathrm{d} t^2 \big{|}_{t_0}##. And finally Newton's principle of determinacy ensures the existence of a unique function ##\mathbf{F} : \mathbf{R}^{N} \times \mathbf{R}^N \times \mathbf{R} \longrightarrow \mathbf{R}^N## such that ##\ddot{\boldsymbol{x}} = \mathbf{F}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t)##.
The above describes a purely mathematical and self-contained framework. In order to make physical predictions we must somehow map from the mathematical model to the real world; this is the point at which one implements operational procedures. One uses rulers and clocks to realize position and time respectively. One realizes an inertial frame by ensuring that an isolated particle advances at a constant rate in a fixed direction. And through experiment one determines the form of the function ##\mathbf{F}## which reproduces the motions observed in the real word.
For example, for a suitable range of extensions the length of a vertical spring changes is observed to change in proportion to the mass attached to the end; this constitutes an operational definition of force. One then lays the spring horizontally on an ice-rink, and pulls the spring in such a way that its extension is always constant. By calculating the rate at which the velocity of the mass increases the acceleration may be deduced, and by measuring the extension of the spring the force exerted on the mass may also be deduced. It is then confirmed through repeated experiments that, to good accuracy, their ratio is constant and Newton's equation holds good for ##\mathbf{F} = \text{constant vector}##.
In short; an accelerometer is something physical which is described by the theory, but must not be part of the theory itself.
In the context of this discussion, the mathematical concept is one of a Galilean co-ordinate chart ##\varphi: A^4 \longrightarrow \mathbf{R} \times \mathbf{R}^3##, where ##A^4 \cong \mathbf{R}^4## is an four-dimensional affine space. In this chart one can describe motions of a system of ##n = N/3## particles by a function ##\boldsymbol{x} : I \longrightarrow \mathbf{R}^N## where ##I \subseteq \mathbf{R}##. The acceleration of the system is nothing but the second derivative ##\ddot{\boldsymbol{x}}(t_0) = \mathrm{d}^2 \boldsymbol{x} / \mathrm{d} t^2 \big{|}_{t_0}##. And finally Newton's principle of determinacy ensures the existence of a unique function ##\mathbf{F} : \mathbf{R}^{N} \times \mathbf{R}^N \times \mathbf{R} \longrightarrow \mathbf{R}^N## such that ##\ddot{\boldsymbol{x}} = \mathbf{F}(\boldsymbol{x}, \dot{\boldsymbol{x}}, t)##.
The above describes a purely mathematical and self-contained framework. In order to make physical predictions we must somehow map from the mathematical model to the real world; this is the point at which one implements operational procedures. One uses rulers and clocks to realize position and time respectively. One realizes an inertial frame by ensuring that an isolated particle advances at a constant rate in a fixed direction. And through experiment one determines the form of the function ##\mathbf{F}## which reproduces the motions observed in the real word.
For example, for a suitable range of extensions the length of a vertical spring changes is observed to change in proportion to the mass attached to the end; this constitutes an operational definition of force. One then lays the spring horizontally on an ice-rink, and pulls the spring in such a way that its extension is always constant. By calculating the rate at which the velocity of the mass increases the acceleration may be deduced, and by measuring the extension of the spring the force exerted on the mass may also be deduced. It is then confirmed through repeated experiments that, to good accuracy, their ratio is constant and Newton's equation holds good for ##\mathbf{F} = \text{constant vector}##.
In short; an accelerometer is something physical which is described by the theory, but must not be part of the theory itself.
Last edited by a moderator: