Which Collision Results in Greater Momentum and Energy Loss?

  • Thread starter Thread starter justagirl
  • Start date Start date
  • Tags Tags
    Magnitude Momentum
AI Thread Summary
In the discussion about two collision scenarios involving identical carts, it is clarified that momentum must be treated as a vector, meaning that in the second case, where the carts collide while moving in opposite directions, the total momentum is zero. This results in the carts being stationary after the collision. Regarding energy loss, while total energy is conserved in both cases, the loss of mechanical energy is greater in case two, as all mechanical energy is converted to heat and sound when the carts come to rest. In contrast, in case one, the combined carts retain some kinetic energy after the collision. Thus, case two results in a greater loss of mechanical energy.
justagirl
Messages
29
Reaction score
0
Say there was 2 collisions. There are 2 carts of identical mass. In the first case cart A starts at height h above the ground and crashes into cart B which is stationary on the flat ground. They stick together.

In the second case, cart A starts at height h/2 above the ground, cart B starts at height h/2 above on the ground on the other side. They fall in opposite directions and collide and stick together.

The problem asks that when the carts reach the flat ground, in which case is the magnitude of the total momentum greater.

When they ask about the magnitude, in case 2, should the momentum be
M(a)V(a) + M(b)V(b) = 2M(a)V(a) (which would be greater than case 1), or should I factor in the fact that they are traveling in opposite directions, in which case the total momentum would be zero?

The second question asks whether the total energy lost in greater in case 1 or case 2. The energy lost would be greater in case 2 if the momentum was 2M(a)V(a)... but then again this goes to question 1.

Thanks!
 
Physics news on Phys.org
justagirl said:
When they ask about the magnitude, in case 2, should the momentum be
M(a)V(a) + M(b)V(b) = 2M(a)V(a) (which would be greater than case 1), or should I factor in the fact that they are traveling in opposite directions, in which case the total momentum would be zero?

At the time of writing, this is a 17+ year old question. So I'm giving a fairly complete answer/explanation.

You must account for the opposite directions. The total momentum for case-2 is therefore zero. That's because momenta are vectors; they must be added as vectors. (If the magnitude of the resultant is needed, this is found after the vector-addition.)

That means forcase-2, the carts (now stuck together) will end-up stationary. You can reach the same conclusion by thinking about symmetry. There is no preferred direction of motion for the combined carts in case-2.

justagirl said:
The second question asks whether the total energy lost in greater in case 1 or case 2. The energy lost would be greater in case 2 if the momentum was 2M(a)V(a)... but then again this goes to question 1.
This is badly worded (or maybe a trick) question. Energy is always conserved. So the total energy loss in both cases is zero.

However, the question was probably intended to be about loss of mechanical energy (ME). Mechanical energy is potential energy + kinetic energy.

In both cases, the starting ME is the same:
- for case-1 it is mgh+ 0 = mgh
- for case-2 it is mg(h/2) + mg(h/2) = mgh

In case-2 all the ME is lost, as the carts end-up stationary. (The ME gets entirely converted to heat (and maybe a little sound energy) as a result of the collision.)

In case 1, the stuck-together cars are still moving. So not all of the ME has been converted to heat.

So the loss of ME is greater in case 2.
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top