Which Regions Can This Cannon Reach with Its Projectile?

AI Thread Summary
The discussion focuses on deriving the trajectory equation for a projectile launched from a cannon at the origin. The correct formula for the projectile's path is identified as y = x tan(α) - (g x²)/(2v₀²)(1 + tan²(α)). Participants clarify the components of the quadratic equation, with a, b, and c defined in relation to the projectile's motion. There is confusion regarding the inclusion of terms in the equation, specifically a term added by Jaan Kalda. The conversation emphasizes the importance of understanding both the horizontal and vertical reach of the projectile in two-dimensional space.
roborangers
Messages
3
Reaction score
1
Homework Statement
A cannon is situated in the origin of coordinate axes
and can give initial velocity v0 to a projectile, the shooting direction can be chosen at will. What is the region of space R
that the projectile can reach?
Relevant Equations
but when i checked the solution i say that kalda added y+gx^2/2v_0^2 but i dont understand why
what i tried to do is to write y=v_0tsin alpha - 1/2gt^2 and x=v_0 cos alpha tand that t=x/v_0 cos alphai plug t in the formula for y and get that y= x tan alpha - gx^2/v_0^2 (tan^2 alpha -1)since jaan klada said there should be a quadratic equation (because its a parabola) i thought that gx^2/v_0^2 tan^2 alpha is a, -x tan alpha is b and gx^2/2v_0 is c and got another formula
 
Physics news on Phys.org
roborangers said:
Homework Statement: A cannon is situated in the origin of coordinate axes
and can give initial velocity v0 to a projectile, the shooting direction can be chosen at will. What is the region of space R
that the projectile can reach?
Relevant Equations: but when i checked the solution i say that kalda added y+gx^2/2v_0^2 but i dont understand why

what i tried to do is to write y=v_0tsin alpha - 1/2gt^2 and x=v_0 cos alpha tand that t=x/v_0 cos alphai plug t in the formula for y and get that y= x tan alpha - gx^2/v_0^2 (tan^2 alpha -1)since jaan klada said there should be a quadratic equation (because its a parabola) i thought that gx^2/v_0^2 tan^2 alpha is a, -x tan alpha is b and gx^2/2v_0 is c and got another formula
This is not easy to read. Punctuation and spacing are important.
 
PeroK said:
This is not easy to read. Punctuation and spacing are important.
yes you are righ but i got it
 
The correct equation for the projectile trajectory is $$y=x\tan\alpha-\frac{gx^2}{2g}(1+\tan^2\alpha).$$The general equation for the quadratic equation is $$ax^2+bx+c=0$$.What exactly is your question? When you say "What is the region of space R that the projectile can reach?" do you mean in the horizontal direction only or in two dimensional space?

I don't know who Jaan Kalda is, but I think that you should include the whole answer that he provided not just the term that he added.
 
yes exactly i got that y is v_0^2/2g - gx^2/2v_0^2
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...

Similar threads

Back
Top