Why can't values of M for J=2 contain values of M for J=1 in np2 configuration?

  • Thread starter Thread starter proton4ik
  • Start date Start date
AI Thread Summary
In the np2 configuration, the maximum value of M is 2, which necessitates the presence of a J=2 state that accounts for five of the six possible M values. After accounting for J=2, only one state remains, which corresponds to J=0, leaving no room for a J=1 state that would require additional states. The discussion emphasizes that the transformation between bases of states must maintain balance, as the total number of states must match. Consequently, values of M for J=2 cannot include those for J=1 due to the limitations imposed by the accounting of states. Understanding these properties is crucial for analyzing the configuration accurately.
proton4ik
Messages
15
Reaction score
0
Hello everyone! I'm trying to understand how to determine states within the different configuration

Homework Statement


The question is, why we don't consider Max M=1 -> J=1 while identifying the states for np2 configuration? (http://www.nat.vu.nl/~wimu/JJCoup.html)
9b5bd41a9f958754594ab9385cb474ff-full.png


Homework Equations

The Attempt at a Solution

 

Attachments

  • 9b5bd41a9f958754594ab9385cb474ff-full.png
    9b5bd41a9f958754594ab9385cb474ff-full.png
    8.6 KB · Views: 527
Physics news on Phys.org
proton4ik said:
The question is, why we don't consider Max M=1 -> J=1 while identifying the states for np2 configuration? (http://www.nat.vu.nl/~wimu/JJCoup.html)
Because there is no such state left once those for J=2 have been counted.

There are six possible values of M: 2, 1, 0, 0, -1, -2. The fact that the maximum value of M is 2, there must be a J=2 in there. That J=2 is made up of M=-2,-1,0,1,2, meaning that 5 of those states make up J=2. What you have left is a single state with M=0, hence J=0.

In the hypothetical case where you would have found 9 possible values of M, 2, 1, 1, 0, 0, 0, -1, -1, -2, then after having accounted for J=2, you would be left with
M=1, 0, 0, -1, so now you would have gotten a J=1 as well.
 
  • Like
Likes proton4ik
DrClaude said:
Because there is no such state left once those for J=2 have been counted.

There are six possible values of M: 2, 1, 0, 0, -1, -2. The fact that the maximum value of M is 2, there must be a J=2 in there. That J=2 is made up of M=-2,-1,0,1,2, meaning that 5 of those states make up J=2. What you have left is a single state with M=0, hence J=0.

In the hypothetical case where you would have found 9 possible values of M, 2, 1, 1, 0, 0, 0, -1, -1, -2, then after having accounted for J=2, you would be left with
M=1, 0, 0, -1, so now you would have gotten a J=1 as well.
Thank you very much for your answer! But still I have a very stupid question left. Why can't values of M for J=2 contain values of M for J=1? What are the properties of M, J that don't allow this?
 
proton4ik said:
Thank you very much for your answer! But still I have a very stupid question left. Why can't values of M for J=2 contain values of M for J=1? What are the properties of M, J that don't allow this?
I'm not sure I understand your question.

The procedure used here is an accounting procedure, and the books must balance. If you have 6 states and can determine that there is a J=2 component, that component accounts for 5 of the states. You are left with 1 state, which mean you can't have a J=1 component, since that would require an additional 3 states.

More technically, this is a basis transformation: you are going from a basis of states characterised by ##j_1## and ##j_2## and transforming to a basis of states characterised by ##J## and ##M##, and this is done because the latter are eigenstates in the presence of spin-orbit coupling. The two bases must be the same size.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...

Similar threads

Back
Top