I Why did I lose 60% on my proof of Generalized Vandermonde's Identity?

AI Thread Summary
The discussion revolves around a graded proof of Generalized Vandermonde's Identity, which received a low score due to a lack of detail. The proof correctly identifies the summation of nonnegative integers but fails to clearly articulate the reasoning behind the double counting method required for the proof. The grader noted that the proof did not adequately explain how all possible selections of m elements are accounted for in the summation. Additionally, the proof implicitly suggested an equivalence between the left-hand side and right-hand side without fully justifying it. To improve, the proof should explicitly outline the double counting argument and clarify the relationship between the summation and the identity.
12john
Messages
12
Reaction score
1
My tests are submitted and marked anonymously. I got a 2/5 on the following, but the grader wrote no feedback besides that more detail was required. What details could I have added? How could I perfect my proof?
Prove Generalized Vandermonde's Identity, solely using a story proof or double counting. DON'T prove using algebra or induction — if you do, you earn zero marks.

$$\sum\limits_{k_1+\cdots +k_p = m} {n_1\choose k_1} {n_2\choose k_2} \cdots {n_p\choose k_p} = { n_1+\dots +n_p \choose m }.$$


Beneath is my proof graded 2/5.
I start by clarifying that the summation ranges over all lists of NONnegative integers ##(k_1,k_2,\dots,k_p)## for which ##k_1 + \dots + k_p = m##. These ##k_i## integers are NONnegative, because this summation's addend or argument contains ##\binom{n_i}{k_i}##.

On the LHS, you choose ##k_1## elements out of a first set of ##n_1## elements; then ##k_2## out of another set of ##n_2## elements, and so on, through ##p## such sets — until you've chosen a total of ##m## elements from the ##p## sets.

Thus, on the LHS, you are choosing ##m## elements out of ##n_1+\dots +n_p##, which is exactly the RHS. Q.E.D.
 
Last edited:
Mathematics news on Phys.org
Can't read the mind of the person who graded it, but you could have made clearer why (or at least mention that) the sum catches every possible way to select m elements. You only documented that every "element" of the LHS is part of the RHS, i.e. LHS <= RHS.
 
I miss a comment on the summation. And the product is only implicitly explained. Where is the double counting? I would have expected an argument ##\sum \ldots = ?## but you have looked at the RHS and reasoned from there instead of the other way around.
 
To put what the others said in another way, the way I read your proof, you seem to be saying
$$\binom{n_1}{k_1}\binom{n_2}{k_2} \cdots \binom{n_p}{k_p} = \binom{n_1+\cdots+n_p}{m}$$ as long as ##m=k_1+\cdots+k_p##.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top