Why Do Electrons Occupy Such Large Spaces in Orbitals?

  • Thread starter Thread starter tahayassen
  • Start date Start date
  • Tags Tags
    Orbitals
tahayassen
Messages
269
Reaction score
1
I understand that electrons can be in any particular location of an orbital. However, why do they have such a large space for the electron to potentially be in? Shouldn't the electron stick to the proton?
 
Physics news on Phys.org
The size of the orbital is around 0.1 nm. From the human perspective, you can say that electron really does stick to the proton very closely.
 
Well for a proper answer you'll have to look at the solutions to the Schroedinger equation, but you can roughly understand it as being due to the kinetic energy that the electrons have, the fact that they have a wavelength, and because of the uncertainty principle (so you can't locate them precisely if you know they have some certain energy).

Even in the ground state orbital electrons still carry kinetic energy, and so their wavelength is not zero (even though wavelength doesn't exactly make sense since they are not free particles, but forget about that), and so there is a characteristic scale at which they sit around the atomic nucleus which is determined by these things (and their mass). The Bohr model, while not correct, gets this scale about right, so you can look that up (the explanation here relates to being able to "fit" a full wavelength of the electron around the nucleus, in a circle, which is vaguely similar to what is happening)
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top