- #1
Leo Liu
- 353
- 156
Why do unconstrained objects always rotate about the lines passing through their CMs when tangential forces are applied to them? I understand that if an object does not rotate about its CM, then its rotation will decay to the rotation about the axis passing through its CM.
Also, when a roller rolling down from a banked surface, the static friction not only acts on the edge of the roller, which makes the roller rotate, but it exerts a translational acceleration opposing the gravity (##\vec{F_{net}} = \vec{F_{component \: of \: gravity}}+\vec{f_{static}}##). Why is it so?
Thanks.
Also, when a roller rolling down from a banked surface, the static friction not only acts on the edge of the roller, which makes the roller rotate, but it exerts a translational acceleration opposing the gravity (##\vec{F_{net}} = \vec{F_{component \: of \: gravity}}+\vec{f_{static}}##). Why is it so?
Thanks.