MHB Why do these conditions have to be satisfied?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Conditions
AI Thread Summary
The discussion focuses on the process of finding solutions to the congruence equation x^2 ≡ a modulo p^n, particularly when transitioning from a known solution modulo p to finding a solution modulo p^2. It highlights that if a solution exists modulo p, it can be used to find a corresponding solution modulo p^n for n > 1. The conversation emphasizes the importance of ensuring that the new solution x_1 satisfies both the original equation and the condition x_1 ≡ x_0 modulo p. Additionally, it notes that while the existence of a solution modulo p guarantees a solution modulo p^n, the reverse is not necessarily true, as demonstrated by counterexamples. Understanding these relationships is crucial for solving congruences in number theory.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Smile)

When we have a congruence $x^2 \equiv a \pmod {p^n}, n=1,2,3, \dots$ , and we know a solution $\pmod {p^n}$, then we also know a solution $\pmod {p^l}, l<n$.

For example, we know that for $n=3$, the congruence $\displaystyle{ x^2 \equiv 2 \pmod { 7^3}}$ has the solution

$$x_0 \equiv 108 \pmod {7^3} \equiv 108 \pmod {343}$$

Obviously, $x_0' \equiv 108 \pmod {49}$ is a solution of $x^2 \equiv 2 \pmod {7^2}$.

Also, $\displaystyle{ x_0'' \equiv 3 \pmod 7}$ is a solution of $x^2 \equiv 2 \pmod 7$.We want to do the reverse.

We know a solution $x_0 \pmod p$ of $x^2 \equiv a \pmod p$, and we want to find a solution $\pmod {p^2}$.
Applying this at the example $x^2 \equiv 2 \pmod 7$, we have $x_0=a_0=3$.

We are looking for a $x_1 \in \mathbb{Z}$, such that:

$$x_1^2 \equiv 2 \pmod {7^2} \text{ such that } x_1 \equiv x_0 \pmod{7}$$I haven't understood why, when we have a solution $\pmod p$, and we are looking for a solution $\pmod {p^2}$, we are looking for a $x_1$, such that:

$$x_1^2 \equiv 2 \pmod {7^2} \text{ such that } x_1 \equiv x_0 \pmod{7}$$

Could you explain it to me? (Sweating)
 
Mathematics news on Phys.org
I presume you are quoting a part of some book you have? You should snapshot the relevant page to give the readers a better idea of what is going on there (of course, only if you have a soft copy of it). From what I can exert from there, the relevant paragraph is merely a step of the whole calculations, which you have apparently omitted.

evinda said:
I haven't understood why, when we have a solution (mod p), and we are looking for a solution (mod p^2), we are looking for a x_1, such that:

Given a solution $x = x_0$ to $x^2 = a$ modulo some prime $p$, if you are looking for solutions of $x^2 = a$ modulo $p^2$, the first step would be to "sieve out" the natural numbers to look only for solutions $a \pmod{p}$ as

$$x^2 = a \pmod{p^2} \Longrightarrow x = a \pmod{p}$$

The converse doesn't hold, however! There is a lot of examples of numbers which differ modulo 2 and 4, for example. That is why I believe there is more to it than what you have posted.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top