Why Does (u,v) = -u2v2 Not Qualify as an Inner Product in R2?

ephemeral1
Messages
28
Reaction score
0

Homework Statement


State why (u,v) is not an inner product for u=(u1,u2) and v=(v1,v2) in R2
(u,v)=-u2v2

Homework Equations


(u,v)=(v,u)
c(u,v)=(cu,v)
(v,v)=>0 and (v,v)=0 if only if v=0

The Attempt at a Solution


I am having trouble understanding this problem and how to start it. Please help. Thank you
 
Physics news on Phys.org
I would think that axiom 4 is not satisfied.
if u=(1,2) and v=(2,2), then -u2v2=-4, which is less than 0, which violates axiom 4 that states (v,v) greater than or equal to 0. Is this right?
 
I think the axiom you refer to only guarantees positive definiteness for the inner product of a vector with itself (v,v), though it shouldn't be hard to alter you argument to work in that case

note the inner product of 2 arbitrary vectors can be negative
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top