Why entropy change is different

  • #1
laser1
80
13
Homework Statement
see description
Relevant Equations
$$\Delta S = \int_i^f{\frac{dQ_{rev}}{T}}$$
1729507216659.png

I tried two different methods when solving this question and have no idea why.

Method 1:
Using the Maxwell relation of $$\left(\frac{\partial S}{\partial V}\right)_T=\left(\frac{\partial P}{\partial T}\right)_V=\frac{R}{V-b}$$ then integrating it, I get $$\Delta S = \int_i^f\frac{R}{V-b}dV$$

Method 2:
$$\Delta S = \int_i^f\frac{P}{T}dV$$ as isothermal implies that ##dQ=PdV##. Next, substituting in ##P## gives $$\int_i^f\left({\frac{R}{V-b}-\frac{a}{TV^2}}\right)dV$$
 
Physics news on Phys.org
  • #2
laser1 said:
Homework Statement: see description
Relevant Equations: $$\Delta S = \int_i^f{\frac{dQ_{rev}}{T}}$$

View attachment 352504
I tried two different methods when solving this question and have no idea why.

Method 1:
Using the Maxwell relation of $$\left(\frac{\partial S}{\partial V}\right)_T=\left(\frac{\partial P}{\partial T}\right)_V=\frac{R}{V-b}$$ then integrating it, I get $$\Delta S = \int_i^f\frac{R}{V-b}dV$$

Method 2:
$$\Delta S = \int_i^f\frac{P}{T}dV$$ as isothermal implies that ##dQ=PdV##. Next, substituting in ##P## gives $$\int_i^f\left({\frac{R}{V-b}-\frac{a}{TV^2}}\right)dV$$
Method 2 is incorrect because your starting equation is incorrect.
 
  • #3
Chestermiller said:
Method 2 is incorrect because your starting equation is incorrect.
##dQ=PdV## in isothermal process is incorrect? I am not sure why it is incorrect. Thanks
 
  • #4
laser1 said:
##dQ=PdV## in isothermal process is incorrect? I am not sure why it is incorrect. Thanks
Because, in an isothermal process for a real gas, dU is not zero.
 
  • Like
Likes laser1
Back
Top