Why is a second pivot necessary in LU factorization with partial pivoting?

  • Thread starter Thread starter aaronfue
  • Start date Start date
  • Tags Tags
    Pivot
aaronfue
Messages
118
Reaction score
0

Homework Statement



Use LU factorization with partial pivoting for the following set of equations:

3x1 - 2x2 + x3 = -10
2x1 + 6x2 - 4x3 = 44
-8x1 - 2x2 + 5x3 = -26

The Attempt at a Solution


I made an attempt to solve this problem, but my answer was wrong compared to the book. There was an additional partial pivot after setting elements 21 & 31 equal to zero. I just would like to know why?

The following is what I got for my L and U matrices:

U=
[ -8 -2 5 ]
[ 0 5.5 -3.25]
[ 0 0 1.25]

L=
[1 0 0]
[.25 1 0]
[.775 0.5 1]
 
Physics news on Phys.org
Do your L and U matrices, when multiplied together, give the original matrix of coefficients? The first row of your U is identical to the third row of the coefficient matrix. Coincidence?
 
aaronfue said:

Homework Statement



Use LU factorization with partial pivoting for the following set of equations:

3x1 - 2x2 + x3 = -10
2x1 + 6x2 - 4x3 = 44
-8x1 - 2x2 + 5x3 = -26


The Attempt at a Solution


I made an attempt to solve this problem, but my answer was wrong compared to the book. There was an additional partial pivot after setting elements 21 & 31 equal to zero. I just would like to know why?

The following is what I got for my L and U matrices:

U=
[ -8 -2 5 ]
[ 0 5.5 -3.25]
[ 0 0 1.25]

L=
[1 0 0]
[.25 1 0]
[.775 0.5 1]

Please show your work details, step-by-step. When I do it (with [-8,-2,5] in row 1 and [3,-2,1] in row 3) I get a different U from yours and do not need any more "partial" pivots; straight pivoting works perfectly well. Or, maybe, I have not understood your question---but I still get a different U.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Replies
4
Views
2K
Replies
5
Views
2K
Replies
1
Views
5K
Replies
5
Views
2K
Replies
5
Views
3K
Replies
1
Views
5K
Replies
1
Views
2K
Back
Top