- #141
- 24,488
- 15,031
What do you mean by "the concept of locality to apply to correlations"? For me it doesn't make sense to say "correlations are local or nonlocal". If you refer to entanglement, it's very clear that it describes correlations between far-distant parts of quantum systems, but this has nothing to do with locality or nonlocality of interactions, i.e., microcausality. There's no constradiction between microcausality and inseparability. Entangled states are no problem within standard relativistic QFT. It's even the rule rather than the exception since already the Bose or Fermi nature of indistingushbable particles implies usually entangled states: Product states are rare since you need to symmetrize or antisymmetrize them, and that's all done automatically using the field operators to describe the states.