I Why is K an anti-unitary operator in (26)?

thatboi
Messages
130
Reaction score
20
Hey all,
I just wanted to double check my understanding of (26) in the following notes: https://arxiv.org/pdf/1512.08882.pdf.
Is the reason that ##(U_{T}\cdot K) \cdot (U_{C}\cdot K) = U_{T}\cdot U_{C}^{*}## because ##K## is a unitary operators and thus ##(K\cdot U_{C}\cdot K) = U_{C}^{*}## as we would expect of a unitary transformation?
 
Physics news on Phys.org
thatboi said:
Hey all,
I just wanted to double check my understanding of (26) in the following notes: https://arxiv.org/pdf/1512.08882.pdf.
Is the reason that ##(U_{T}\cdot K) \cdot (U_{C}\cdot K) = U_{T}\cdot U_{C}^{*}## because ##K## is a unitary operators and thus ##(K\cdot U_{C}\cdot K) = U_{C}^{*}## as we would expect of a unitary transformation?
No, it says explicitly that K is an anti-unitary operator, not a unitary one. Specifically, K implements complex conjugation.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Back
Top