I Why is Number-Flux Four-Vector Frame-Independent?

  • I
  • Thread starter Thread starter GR191511
  • Start date Start date
GR191511
Messages
76
Reaction score
6
Recently I started studying 《A First Course in General Relativity》 and I came across a question in my book:
##\vec N =n\vec U##where n is number density,U is four-velocity,N is number-flux four-vector .The following sentence confused me:
In Galilean physics,number density was a scalar,the same in all frames(no Lorentz contraction),while flux was quite another thing:a three-vector that was frame dependent,since the velocities of particles are a frame-dependent notion.Our relativistic approach has unified these two notions into a single,frame-independent four-vector...
I wonder Why the number-flux four-vector is frame-independent?
 
Physics news on Phys.org
All four-vectos are frame independent

You should read page 88 (in the second edition) where it is explained what 'frame independent' means in this case
 
Last edited by a moderator:
  • Like
Likes GR191511, dextercioby and PeroK
GR191511 said:
I wonder Why the number-flux four-vector is frame-independent?
Because it's a four vector. They're frame independent by construction.

I think what you need to do is convince yourself that ##nU^a## actually represents something meaningful, and that it represents something meaningful whether ##U^a## is parallel to your frame's timelike axis or not. The usual way to go about it is to imagine a very large number of particles each with velocity ##U^a##. Then convince yourself that the number of particles crossing an infinitesimal plane depends on the number density ##n## and the velocity field ##U^a##, then convince yourself that the transformation properties of ##U^a## supply the right factors of ##\gamma## so that the transformed flux density behaves as you expect.
 
  • Like
Likes GR191511, PeroK and vanhees71
The components of the 4-velocity are still frame dependent even if the 4-velocity itself is an invariant geometric object. This means that also the number density itself is frame dependent in relativity (##n## is the number density in the rest frame and is a scalar) just as the flux, which is number density times velocity just as in Galilean spacetime.
 
  • Like
Likes GR191511, PeroK, Ibix and 1 other person
Yes, and that's why one defines (!) such medium-related "intrinsic" quantities in the local rest frame(s) of the fluid and thus becoming a scalar. That holds also for thermodynamic quantities like temperature or chemical potential.
 
  • Like
Likes GR191511 and Ibix
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top