Why is the Lie Bracket the same as the Cross Product for a 2 Sphere in R3?

AI Thread Summary
The discussion centers on proving that the Lie bracket for a 2-sphere in R3 is equivalent to the cross product. The computations of the Jacobean matrices and the cross product yield differing signs in the x-component, leading to confusion about the relationship between vector fields and vectors. It is clarified that the Lie bracket of vector fields on a manifold results in another vector field on the same manifold, while the cross product relates to vector fields in R3. The conversation also touches on the distinctions between various Lie algebras and their bases, emphasizing that the choice of isomorphism affects the comparison with the cross product. Understanding these concepts helps resolve the initial confusion regarding the nature of the vectors and their corresponding fields.
nigelscott
Messages
133
Reaction score
4
Homework Statement
Prove that for a 2 sphere in R R[SUP]3[/SUP] the Lie bracket is the same as to cross product.
Relevant Equations
Vector: X = (y,-x,0); Y = (0,z-y)

[X,Y] = J[SUB]Y[/SUB]X - J[SUB]X[/SUB]Y where the J's are the Jacobean matrices.
Prove that for a 2 sphere in R3 the Lie bracket is the same as the cross product using the vector: X = (y,-x,0); Y = (0,z-y)

[X,Y] = JYX - JXY where the J's are the Jacobean matrices.

I computed JYX - JXY to get (-z,0,x). I computed (y,-x,0) ^ (0,z,-y) and obtained (xy,y2,yz) = (z,0,x) using Wolfram but I can't figure out why the sign of the x-component is different. Any help would be appreciated.
 
Physics news on Phys.org
It is a bit confused what you have written there. Jacobi matrix of what? Which transformations of the 2-sphere do you consider?

One way to solve the exercise is:
  1. Show that ##\{\,(1,0,0),(0,1,0),(0,0,1)\,\}## with the cross product defines a Lie algebra.
  2. There are up to isomorphism only three three dimensional Lie algebras: the Abelian, the Heisenberg algebra and a simple one. As they all have a different product space, the commutator ideal, they can easily be distinguished, and the cross product can only be the simple one.
  3. Now which version aka basis of the simple three dimensional Lie algebra you want to compare the cross product with is a matter of taste. You can choose between ##\mathfrak{sl}(2,\mathbb{R}), \mathfrak{so}(3,\mathbb{R}), \mathfrak{su}_{\mathbb{R} } (2,\mathbb{C})##.
Hence the answer to your question is: It depends on which isomorphism. i.e. basis you choose.
 
Last edited:
Ok. Thanks for your response. The example I am using is from this video here starting at 12 mins and continuing here. Here he talks about tangents to the sphere with the Lie bracket being another tangent to the sphere which is at odds with the cross product which would produce a vector normal to the tangent plane. When I go through the same procedure using the example in https://math.stackexchange.com/questions/1326501/question-about-lie-bracket-and-cross-product I get a consistent result. I wonder if I am confusing vectors with vector fields?
 
Any normal vector on a sphere is a tangent vector at a different spot. I'm not sure which Lie group is associated with the cross product, I assume ##SO(3)## fits best. But the sphere itself is two dimensional and corresponds to the quotient group ##SO(3)/SO(2)##. Maybe the ##3-##sphere ##SO(4)/SO(3)## works one-to-one.
 
nigelscott said:
Ok. Thanks for your response. The example I am using is from this video here starting at 12 mins and continuing here. Here he talks about tangents to the sphere with the Lie bracket being another tangent to the sphere which is at odds with the cross product which would produce a vector normal to the tangent plane. When I go through the same procedure using the example in https://math.stackexchange.com/questions/1326501/question-about-lie-bracket-and-cross-product I get a consistent result. I wonder if I am confusing vectors with vector fields?
The YouTube video and the the stackexchange link consider vector fields on different manifolds.

In order to give an illustrative example of the general property that the Lie bracket of any two vector fields on manifold ##M## is itself a vector field on manifold ##M##, the lecturer in the YouTube video considers two specific vector fields, ##X## and ##Y##, on the specific manifold ##S^2##. The lecturer explicitly calculates ##\left[ X , Y \right]##, and finds that, as expected, ##\left[ X , Y \right]## is a vector field on ##S^2##. As far as I can see, this has nothing to do with the cross product of two vectors.

At the stackexchange link, vector fields on the manifold ##\mathbb{R}^3## are considered. The set of all smooth vector fields forms an infinite-dimensional vector space. The stackexchange link considers a specific 3-dimensional subspace, and relates this 3-dimensional subspace of vector fields on ##\mathbb{R}^3## (not ##S^2##) to cross products.
 
  • Like
Likes WWGD
OK. Thanks to you both. I think I understand it now.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top