- #1
archipatelin
- 26
- 0
Cotton tensor [tex]C_{\mu\varkappa\lambda}[/tex] is define as:
Weyl tensor obey II. Bianchi identity (and all symetries of Rieamann tensor):
Is this correct?
[tex]\nabla_{\sigma}W^{\sigma}_{\phantom{M}\mu\varkappa\lambda}=-\frac{n-3}{n-2}C_{\mu\varkappa\lambda}[/tex]
where [tex]W^{\sigma}_{\phantom{M}\mu\varkappa\lambda}[/tex] is Weyl tensor and [tex] n [/tex] is dimension of space.Weyl tensor obey II. Bianchi identity (and all symetries of Rieamann tensor):
[tex]\nabla_{\nu}W^{\sigma}_{\phantom{M}\mu\varkappa\lambda} + \nabla_{\varkappa}W^{\sigma}_{\phantom{M}\mu\lambda\nu}+\nabla_{\lambda}W^{\sigma}_{\phantom{M}\mu\nu\varkappa}=0[/tex]
and extra it is traceless:[tex]W^{\sigma}_{\phantom{M}\mu\sigma\varkappa}=0[/tex]
For a divergence of Weyl tensor can write:[tex]\nabla_{\sigma}W^{\sigma}_{\phantom{M}\mu\varkappa\lambda}=g^{\rho\sigma}\nabla_{\sigma}W_{\rho\mu\varkappa\lambda}=\left<\mbox{II. Bianchi identity}\right>=-g^{\rho\sigma}\left(\nabla_{\varkappa}W_{\rho\mu\lambda\sigma}+\nabla_{\lambda}W_{\rho\mu\sigma\varkappa}\right)=[/tex]
[tex]=\nabla_{\varkappa}W^{\sigma}_{\phantom{M}\mu\sigma\lambda}-\nabla_{\lambda}W^{\sigma}_{\phantom{M}\mu\sigma\varkappa}=0[/tex]
Becose Weyl tensor is traceless therefor Cotton tensor must be identical zero![tex]=\nabla_{\varkappa}W^{\sigma}_{\phantom{M}\mu\sigma\lambda}-\nabla_{\lambda}W^{\sigma}_{\phantom{M}\mu\sigma\varkappa}=0[/tex]
Is this correct?