A Why must β be a consistent rational number across all circular orbit radii?

  • A
  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Rational Theorem
AI Thread Summary
For orbits to be closed, the parameter β must be a rational number, and it must remain consistent across all circular orbit radii. This consistency is necessary because rational numbers are disconnected from one another, meaning that between any two rational numbers, there exist non-rational numbers. Therefore, if β were to change with varying radius, it would imply a continuous transition through non-rational values, which is not possible. The discussion emphasizes that maintaining the same rational value for β ensures the integrity of the circular orbit across different radii. Understanding this concept is crucial for grasping the implications of Bertrand's theorem in orbital mechanics.
Kashmir
Messages
466
Reaction score
74
Wikipedia on Bertrands theorem, when discussing the deviations from a circular orbit says:
>..."The next step is to consider the equation for ##u## under small perturbations ##{\displaystyle \eta \equiv u-u_{0}}## from perfectly circular orbits"

(Here ##u## is related to the radial distance as ##u=1/r## and ##u_0## corresponds to the radius of a circular orbit ) ...>"The solutions are
##{\displaystyle \eta (\theta )=h_{1}\cos(\beta \theta )}##">"For the orbits to be closed, ##β## must be a rational number. What's more, **it must be the same rational number for all radii**, since β cannot change continuously; the rational numbers are totally disconnected from one another"Why does ##\beta## have to be the **same** rational number for all radii at which a circular orbit is possible ?

I understand why it should be rational, but why the same number for all radii?

Link: https://en.m.wikipedia.org/wiki/Bertrand's_theorem
 
Physics news on Phys.org
Kashmir said:
"For the orbits to be closed, ##β## must be a rational number. What's more, **it must be the same rational number for all radii**, since β cannot change continuously; the rational numbers are totally disconnected from one another"

Why does ##\beta## have to be the **same** rational number for all radii at which a circular orbit is possible ?
As the quote states, rational numbers are totally disconnected from one another, meaning that between two rational numbers you have non-rational numbers. So the rational number β cannot change continuously, while you continuously vary the radius.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top