- #1
Kashmir
- 468
- 74
*Pathria, Statistical mechanics pg 11,4ed*
The text is long but it is straightforward. The question is at last about the equation given at end
In order to find the number of microstates ##\Omega(N,V,E##) author writes
" In other words, we have to determine the total number of (independent) ways of satisfying the equation
##
\sum_{r=1}^{3 N} \varepsilon_{r}=E,
"##
Where ##E## is the total energy of system and
##\varepsilon_{r}## is the energy of ##r##th degree of freedom.
" Now, the energy eigenvalues for a free, nonrelativistic particle confined to a cubical box of side ##L\left(V=L^{3}\right)##, under the condition that the wave function ##\psi(\boldsymbol{r})## vanishes everywhere on the boundary, are given by
##
\varepsilon\left(n_{x}, n_{y}, n_{z}\right)=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) ; \quad n_{x}, n_{y}, n_{z}=1,2,3, \ldots,
##
where ##h## is Planck's constant and ##m## the mass of the particle. The number of distinct eigenfunctions (or microstates) for a particle of energy ##\varepsilon## would, therefore, be equal to the number of independent, positive-integral solutions of the equation
##
\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)=\frac{8 m V^{2 / 3} \varepsilon}{h^{2}}=\varepsilon^{*} .
##
We may denote this number by ##\Omega(1, \varepsilon, V)##. Extending the argument, it follows that the desired number ##\Omega(N, E, V)## would be equal to the number of independent, positiveintegral solutions of the equation
##
\sum_{r=1}^{3 N} n_{r}^{2}=\frac{8 m V^{2 / 3} E}{h^{2}}=E^{*}
##"
"... the number ##\Omega(N, V, E)##, or better ##\Omega_{N}\left(E^{*}\right)## is equal to the number of positiveintegral lattice points lying on the surface of a ##3 N##-dimensional sphere of radius ##\sqrt{E}^{*} ## . The number ##\Sigma_{N}\left(E^{*}\right)##, which denotes the number of positive-integral lattice points lying on or within the surface of a ##3 N##-dimensional sphere of radius ##\sqrt{E}^{*}##. In terms of our physical problem, this would correspond to the number, ##\Sigma(N, V, E)##, of microstates of the given system consistent with all macrostates characterized by the specified values of the parameters ##N## and ##V## but having energy less than or equal to ##E####\Sigma(N, V, E)=\sum_{E^{\prime} \leq E} \Omega\left(N, V, E^{\prime}\right)
##
or
##
\Sigma_{N}\left(E^{*}\right)=\sum_{E^{*} \leq E^{*}} \Omega_{N}\left(E^{{*\prime}}\right)##
"...let us examine the behavior of the numbers ##\Omega_{1}\left(\varepsilon^{*}\right)## and ##\Sigma_{1}\left(\varepsilon^{*}\right)## which correspond to the case of a single particle confined to the given volume ##V##. The number ##\Sigma_{1}\left(\varepsilon^{*}\right)## on the other hand, exhibits a much smoother asymptotic behavior. **From the geometry of the problem, we note that, asymptotically, ##\Sigma_{1}\left(\varepsilon^{*}\right)## should be equal to the volume of an octant of a three-dimensional sphere of radius** ##\sqrt{\varepsilon}^{*}##, **that is**,
##
\lim _{\varepsilon^{*} \rightarrow \infty} \frac{\Sigma_{1\left(\varepsilon^{*}\right)}}{(\pi / 6) \varepsilon^{* 3 / 2}}=1.
##
* Why is the above equation true?
The text is long but it is straightforward. The question is at last about the equation given at end
In order to find the number of microstates ##\Omega(N,V,E##) author writes
" In other words, we have to determine the total number of (independent) ways of satisfying the equation
##
\sum_{r=1}^{3 N} \varepsilon_{r}=E,
"##
Where ##E## is the total energy of system and
##\varepsilon_{r}## is the energy of ##r##th degree of freedom.
" Now, the energy eigenvalues for a free, nonrelativistic particle confined to a cubical box of side ##L\left(V=L^{3}\right)##, under the condition that the wave function ##\psi(\boldsymbol{r})## vanishes everywhere on the boundary, are given by
##
\varepsilon\left(n_{x}, n_{y}, n_{z}\right)=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) ; \quad n_{x}, n_{y}, n_{z}=1,2,3, \ldots,
##
where ##h## is Planck's constant and ##m## the mass of the particle. The number of distinct eigenfunctions (or microstates) for a particle of energy ##\varepsilon## would, therefore, be equal to the number of independent, positive-integral solutions of the equation
##
\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)=\frac{8 m V^{2 / 3} \varepsilon}{h^{2}}=\varepsilon^{*} .
##
We may denote this number by ##\Omega(1, \varepsilon, V)##. Extending the argument, it follows that the desired number ##\Omega(N, E, V)## would be equal to the number of independent, positiveintegral solutions of the equation
##
\sum_{r=1}^{3 N} n_{r}^{2}=\frac{8 m V^{2 / 3} E}{h^{2}}=E^{*}
##"
"... the number ##\Omega(N, V, E)##, or better ##\Omega_{N}\left(E^{*}\right)## is equal to the number of positiveintegral lattice points lying on the surface of a ##3 N##-dimensional sphere of radius ##\sqrt{E}^{*} ## . The number ##\Sigma_{N}\left(E^{*}\right)##, which denotes the number of positive-integral lattice points lying on or within the surface of a ##3 N##-dimensional sphere of radius ##\sqrt{E}^{*}##. In terms of our physical problem, this would correspond to the number, ##\Sigma(N, V, E)##, of microstates of the given system consistent with all macrostates characterized by the specified values of the parameters ##N## and ##V## but having energy less than or equal to ##E####\Sigma(N, V, E)=\sum_{E^{\prime} \leq E} \Omega\left(N, V, E^{\prime}\right)
##
or
##
\Sigma_{N}\left(E^{*}\right)=\sum_{E^{*} \leq E^{*}} \Omega_{N}\left(E^{{*\prime}}\right)##
"...let us examine the behavior of the numbers ##\Omega_{1}\left(\varepsilon^{*}\right)## and ##\Sigma_{1}\left(\varepsilon^{*}\right)## which correspond to the case of a single particle confined to the given volume ##V##. The number ##\Sigma_{1}\left(\varepsilon^{*}\right)## on the other hand, exhibits a much smoother asymptotic behavior. **From the geometry of the problem, we note that, asymptotically, ##\Sigma_{1}\left(\varepsilon^{*}\right)## should be equal to the volume of an octant of a three-dimensional sphere of radius** ##\sqrt{\varepsilon}^{*}##, **that is**,
##
\lim _{\varepsilon^{*} \rightarrow \infty} \frac{\Sigma_{1\left(\varepsilon^{*}\right)}}{(\pi / 6) \varepsilon^{* 3 / 2}}=1.
##
* Why is the above equation true?