Why Use the Dirac Equation for Graphene Instead of the Schrödinger Equation?

  • Thread starter Thread starter jamie.j1989
  • Start date Start date
jamie.j1989
Messages
76
Reaction score
0
Hi, I'm doing a project on graphene and don't really understand why we use the Dirac equation instead of the Schrodinger equation. The fermi velocity of electrons in graphene is not relativistic, I know the particles are considered as quasiparticles but don't see how this changes things. My only reasoning is that the effective mass is zero and the 1/m dependence in the Schrodinger equation is incompatible with this? Thanks.

Scrodinger equation

$$i\hbar\frac{\partial}{\partial{t}}\psi({\textbf{r},t})=\left[-\frac{\hbar^2}{2m}\nabla^2V(\textbf{r})+E\right]\psi({\textbf{r},t})$$

Dirac equation

$$\left[\gamma^{\mu}\partial_{\mu}+\frac{c}{\hbar}m\right]\psi(\textbf{r},t)=0$$
 
Physics news on Phys.org
Hi jamie.j1989, I am not sure what aspects of graphene you are investigating, but for example the conductance of graphene is very good, which translates to very fast moving electrons (definitely within the range where we see relativistic effects). Also the fermi velocity is only relevant at 0K, so for temperatures above that the velocities of the fastest electrons will exeed the fermi velocity.
 
jamie.j1989 said:
Hi, I'm doing a project on graphene and don't really understand why we use the Dirac equation instead of the Schrodinger equation. The fermi velocity of electrons in graphene is not relativistic, I know the particles are considered as quasiparticles but don't see how this changes things.

The fundamental equation for graphene is the Schroedinger equation. However, an equation with the form of the Dirac equation "emerges" from the Schroedinger equation as an excellent approximation at low energy. The "speed of light" in the equation with the form of the Dirac equation is not the speed of light. It is ~10^6 m/s.
http://arxiv.org/abs/cond-mat/0509330
http://www.physics.upenn.edu/~kane/pedagogical/295lec3.pdf
 
Last edited:
  • Like
Likes bhobba
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top