Work done by gravity and the minus sign

In summary, the problem is about the rate at which mechanical energy is transferred from the muscles to the altitude (potential energy) of the body. The body gains potential energy and the calculated power reflects how quickly that energy is gained and stored. The lifting force provided by the Marine does positive work while gravity does negative work. The work-energy theorem states that the net work done on an object is equal to the change in its kinetic energy. Therefore, the raising force does positive work on the object. The work done by gravity on the object is the negative of the work done by the raising force, and is equal to the change in gravitational potential energy.
  • #1
Mohmmad Maaitah
88
19
Homework Statement
As in picture
Relevant Equations
Work by gravity = -mgh
Shouldn't work be minus when the man climbing up and force on him is down?
shouldn't the power be also in minus?
Can someone explain to me why is it positive please!
WhatsApp Image 2023-05-02 at 13.36.58.jpg


WhatsApp Image 2023-05-02 at 13.36.59.jpg
 
Physics news on Phys.org
  • #2
Mohmmad Maaitah said:
Homework Statement: As in picture
Relevant Equations: Work by gravity = -mgh

Shouldn't work be minus when the man climbing up and force on him is down?
shouldn't the power be also in minus?
Can someone explain to me why is it positive please!
Because it asks for the man's power output, i.e. the rate at which the man does work against gravity. You have calculated the rate at which gravity does work on the man.
 
  • Like
Likes MatinSAR, jbriggs444 and malawi_glenn
  • #3
Mechanical energy can only be transferred from one body to another.
The problem is about the rate at which mechanical energy is transferred from the muscles to the altitude (potential energy) of the body.
From that point of view, the body has gained potential energy (hence, positive work).
The calculated power reflects how quickly that energy has been gained and stored.

Once stored in form of potential energy, it could be transferred to another body.
For example, the man drops down to ground level while a rope around a pulley lifts certain weight up to the altitude he was at.
In that case, the body loses energy (hence, negative work).

On the other hand, the lifted weight has gained potential energy (it has received work or energy; therefore, positive work).
 
  • #4
Lnewqban said:
Mechanical energy can only be transferred from one body to another.
The problem is about the rate at which mechanical energy is transferred from the muscles to the altitude (potential energy) of the body.
From that point of view, the body has gained potential energy (hence, positive work).
The calculated power reflects how quickly that energy has been gained and stored.

Once stored in form of potential energy, it could be transferred to another body.
For example, the man drops down to ground level while a rope around a pulley lifts certain weight up to the altitude he was at.
In that case, the body loses energy (hence, negative work).

On the other hand, the lifted weight has gained potential energy (it has received work or energy; therefore, positive work).
The terms positive and negative preceding "work" are meaningless if you do not specify the force that does the work. When the body is lifted you say that the body has gained potential energy (correct) and you conclude "hence positive work." That's debatable. There is no default force that does work. The correct conclusion is "hence the lifting force does positive work and gravity does negative work." In this case the lifting force is provided by the Marine. The Marine's power output is positive at the expense of biochemical power generated in the Marine's muscles.
 
  • Like
Likes MatinSAR
  • #5
kuruman said:
The terms positive and negative preceding "work" are meaningless if you do not specify the force that does the work. When the body is lifted you say that the body has gained potential energy (correct) and you conclude "hence positive work." That's debatable. There is no default force that does work. The correct conclusion is "hence the lifting force does positive work and gravity does negative work." In this case the lifting force is provided by the Marine. The Marine's power output is positive at the expense of biochemical power generated in the Marine's muscles.
I appreciate your observation, @kuruman

This part is not clear to me:
The correct conclusion is "... and gravity does negative work."
 
  • Like
Likes MatinSAR
  • #6
Lnewqban said:
I appreciate your observation, @kuruman

This part is not clear to me:
The correct conclusion is "... and gravity does negative work."
When an object is raised the vertical displacement vector ##\vec d## forms an angle of 180° with the force of gravity ##\vec F=m\vec g##. The work done by gravity on the raised object is $$W_g=\vec F\cdot \vec d=Fd\cos(180^{\circ})=Fd(-1)<0.$$ If the object is raised at constant speed, its kinetic energy does not change. By the work-energy theorem the work done by the net force must be zero, therefore the work done by the raising force is the negative of the work done by gravity, i.e. the raising force does positive work on the object.
 
  • Like
Likes MatinSAR, paulimerci, Lnewqban and 1 other person
  • #7
It may also be worth mentioning the role of gravitational potential energy (GPE).

Being a conservative force, gravity has its own ‘energy store’, i.e. GPE.

When gravity does positive work (e.g. accelerating a free-falling stone) the work done by gravity (positive) is the decrease in GPE. Stored GPE is 'used up'.

When gravity does negative work (e.g. when we climb a ladder) the work done by gravity (negative) is the increase in GPE. We increase the stored GPE.

##\text {Work done by gravity} = -\Delta \text {(GPE)}##.
 
  • Like
Likes MatinSAR and Lnewqban
  • #8
kuruman said:
By the work-energy theorem the work done by the net force must be zero, therefore the work done by the raising force is the negative of the work done by gravity, i.e. the raising force does positive work on the object.
Clear now, professor.
Again, thank you.
 
  • Like
Likes MatinSAR, berkeman and kuruman

FAQ: Work done by gravity and the minus sign

What is the work done by gravity?

The work done by gravity is the energy transferred by the gravitational force when an object moves in the direction of the gravitational force. It is calculated as the product of the gravitational force, the displacement of the object, and the cosine of the angle between the force and the displacement vector.

Why is there a minus sign in the work done by gravity?

The minus sign appears in the work done by gravity when considering the work done by an external force opposing gravity, such as lifting an object upwards. In this case, the gravitational force and the displacement are in opposite directions, resulting in a negative value for the work done by gravity.

How do you calculate the work done by gravity when an object is moving vertically?

When an object moves vertically, the work done by gravity can be calculated using the formula: \( W = mgh \), where \( W \) is the work done by gravity, \( m \) is the mass of the object, \( g \) is the acceleration due to gravity, and \( h \) is the vertical displacement. If the object is moving upwards, the work done by gravity is negative, and if it is moving downwards, the work is positive.

What does a positive or negative work done by gravity indicate?

A positive work done by gravity indicates that gravity is doing work on the object, typically when the object is moving downwards. A negative work done by gravity indicates that an external force is doing work against gravity, such as when lifting an object upwards.

How does the angle of displacement affect the work done by gravity?

The angle of displacement affects the work done by gravity through the cosine term in the work formula. When the displacement is directly in the direction of the gravitational force (downwards), the angle is 0 degrees, and the work done by gravity is maximal and positive. When the displacement is directly opposite to the gravitational force (upwards), the angle is 180 degrees, and the work done by gravity is negative.

Similar threads

Replies
3
Views
397
Replies
19
Views
313
Replies
11
Views
2K
Replies
2
Views
3K
Replies
2
Views
374
Back
Top