Work/force/kinematics slingshot problem

  • Thread starter Thread starter Shadowsol
  • Start date Start date
  • Tags Tags
    Slingshot
AI Thread Summary
An average force of 8.2 Newtons stretches a slingshot 43 centimeters to launch a 0.4 kg rock from a height of 18 meters. The spring/work equation, .5k(x)² = W, applies, with the stretch distance representing 'x'. The potential energy from the slingshot converts to kinetic energy to determine the rock's velocity just before impact. The final velocity is not zero; it is calculated using the initial velocity from the slingshot and gravitational acceleration. Time to hit the water can be found using kinematic equations.
Shadowsol
Messages
22
Reaction score
0
1. An average force of 8.2 Newtons is used to pull a .4 kg rock, stretching a sling shot 43 centimeters. The rock is shot downward from a bridge 18 meters above a stream. What will be the velocity of the rock just before it hits the water? How much time will it take to hit the water.



Homework Equations





3. I just want to know if the spring/work equation, .5k(x)squared=w applies to the slingshot, and would stretching it by 43 CM = the x part of the equation? I don't know what to do once I get work. How do i get the velocity of the rock? I know A after shot would be 9.8, d is 18, but is final Velocity 0?
 
Physics news on Phys.org
Shadowsol said:
3. I just want to know if the spring/work equation, .5k(x)squared=w applies to the slingshot, and would stretching it by 43 CM = the x part of the equation? I don't know what to do once I get work. How do i get the velocity of the rock? I know A after shot would be 9.8, d is 18, but is final Velocity 0?


It does apply, and yes. The spring PE is converted to KE. That's how you get the velocity. Final velocity nowhere is zero.
 
Ok, so I put in the force*the distance it was pulled back to get the potential sling shot energy. I than set that equal to the KE equation and got V. Than I simply used that V as V0, used 9.8 as A, and 18 m as D, than solved for V1. Is this correct?
 
Absolutely. You find the time using the same kinematics.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top