- #1
WorldWiz
- 19
- 0
- TL;DR Summary
- Proposal to Use an Inductor Coil underneath Wire Tracks to Accelerate Ball Bearings
I need a method to accelerate a ball bearing down a pair of wire tracks, and to generate a consistent amount of force on every activation. Please critique my tentative design:
I want to use an inductive coil activated by a proximity sensor to generate a transient EM field to accelerate the ball bearing. Since the ball just runs on a pair of wires, I think I may need to place the coil below the tracks (rather than run the tracks through the center of a solenoid), so that there will be some force keeping the ball from flying off the tracks.
As follow-up questions, I’m also wondering if I would get better current to field strength efficiency with a toroid core inductor coil or with a bar core inductor coil generating the attractive magnetic field? I also don’t entirely understand the Q-factor, so for my purposes, would an iron core or a ferrite core be a better choice?
Thanks for your help.
I want to use an inductive coil activated by a proximity sensor to generate a transient EM field to accelerate the ball bearing. Since the ball just runs on a pair of wires, I think I may need to place the coil below the tracks (rather than run the tracks through the center of a solenoid), so that there will be some force keeping the ball from flying off the tracks.
As follow-up questions, I’m also wondering if I would get better current to field strength efficiency with a toroid core inductor coil or with a bar core inductor coil generating the attractive magnetic field? I also don’t entirely understand the Q-factor, so for my purposes, would an iron core or a ferrite core be a better choice?
Thanks for your help.