MHB Write an inequality that describes the region where the grass has been planted

  • Thread starter Thread starter Yazan975
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion centers on determining the correct inequality for the region where grass is planted, which is below the parabolic curve defined by P = 5x - x^2 for 0 ≤ x ≤ 5. The initial confusion arises from an incorrect inequality, P < x^2 - 5x, which does not accurately represent the planted area. Instead, the correct representation is that the region R is located under the curve and above the x-axis, leading to the inequality 0 ≤ R ≤ P. Clarification is sought on how to approach the remaining questions related to this problem. The conversation highlights the importance of accurately interpreting the geometric representation of the problem.
Yazan975
Messages
30
Reaction score
0
View attachment 8955

I do not know how to start thinking about part a and then got even more confused when I saw the answer be:
P<x^2-5x.

I ask for your guidance please.
 

Attachments

  • Screen Shot 2019-05-05 at 10.26.36 AM.png
    Screen Shot 2019-05-05 at 10.26.36 AM.png
    31.6 KB · Views: 109
Mathematics news on Phys.org
The problem is rather misleading since the perimeter upper edge follows the path of the parabolic curve $P = 5x-x^2$ for values $0 \le x \le 5$. The sketch shown looks more like a semicircle (why, I don't know). See the attached graph for a better depiction.

Since grass is planted below the edge defined by that parabola, then the planted region, $R$, is located under the curve that defines the upper edge and above the x-axis ... that is $0 \le R \le P = 5x-x^2$. So I do not agree with the inequality you stated, $P < x^2-5x$.

Are you able to answer the remaining questions?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top