I Writing the wave function solutions for a particle in a 2-D box

Hamiltonian
Messages
296
Reaction score
193
The final wave function solutions for a particle trapped in an infinite square well is written as:

$$\Psi(x,t) = \Sigma_{n=1}^{\infty} C_n\sqrt{\frac{2}{L_x}}sin(\frac{n\pi}{L_x}x)e^{-\frac{in^2{\pi}^2\hbar t}{2m{L_x}^2}}$$

The square of the coefficient ##C_n## i.e. ##{|C_n|}^2## is proportional to the probability of the system being in that state on measurement.

The wave function solution of a particle in a 2-D box
$$\Psi_{n,m}(x,y,t) = \frac{2}{\sqrt{L_x L_y}} sin(\frac{n\pi}{L_x}x)sin(\frac{m\pi}{L_y}y)e^{-\frac{i\pi^2 \hbar^2 t}{2m}[\frac{n^2}{{L_x}^2}+\frac{m^2}{{L_y}^2}]}$$

is it correct to write the final solution as:
$$\Psi (x,y,t) = \Sigma_{n=1}^{\infty} \Sigma_{m=1}^{\infty}C_n C_m\frac{2}{\sqrt{L_x L_y}} sin(\frac{n\pi}{L_x}x)sin(\frac{m\pi}{L_y}y)e^{-\frac{i\pi^2 \hbar^2 t}{2m}[\frac{n^2}{{L_x}^2}+\frac{m^2}{{L_y}^2}]}$$

will the probability of the system being in a particular state be proportional to ##|C_n C_m|^2##?
 
Physics news on Phys.org
Not quite. Each combination of ##n, m## has its own coefficient: so, it should be ##C_{nm}##
 
  • Like
Likes Hamiltonian
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...

Similar threads

Back
Top