MHB X^6 - y^6 As Difference of Squares

AI Thread Summary
The discussion focuses on factoring the expression x^6 - y^6 as a difference of squares. The initial factorization is presented as (x^3 - y^3)(x^3 + y^3), leading to the application of the difference of cubes for further simplification. The first factor can be factored using the difference of squares, while the second factor is addressed through a system of equations to find coefficients. Ultimately, the expression is fully factored as (x^2 - y^2)(x^4 + x^2y^2 + y^4) and further simplified to (x^2 + xy + y^2)(x^2 - xy + y^2). The discussion emphasizes the importance of recognizing both difference of squares and cubes in the factorization process.
mathdad
Messages
1,280
Reaction score
0
Factor x^6 - y^6 as a difference of squares.

Solution:

(x^3 - y^3)(x^3 + y^3)

The problems states to use the difference of squares.

I can apply the difference of cubes to the left factor and the sum of cubes to the right factor but how do I continue using the difference of squares?
 
Mathematics news on Phys.org
Once you've done that' you've applied the difference of squares...to continue factoring further, as you noted, you need to use the sum/difference of cubes. Now, if you begin with the difference of cubes, you'd have:

$$x^6-y^6=(x^2-y^2)(x^4+x^2y^2+y^4)$$

Now to continue, you would use the difference of squares on the first factor. To factor the second factor, we can try:

$$x^4+x^2y^2+y^4=(x^2+axy+y^2)(x^2+bxy+y^2)=x^4+(a+b)x^3y+(ab+2)x^2y^2+(a+b)axy^3+y^4$$

Equating coefficients, we obtain the system:

$$a+b=0\implies a=-b$$

$$ab+2=1\implies ab=-1$$

And so we find:

$$(a,b)=(\pm1,\mp1)$$

And we may write:

$$x^4+x^2y^2+y^4=(x^2+xy+y^2)(x^2-xy+y^2)$$

This is what we would find by using the difference of squares first, and then applying the sum/difference of cubes, so that's the simpler route to take. :D
 
MarkFL said:
Once you've done that' you've applied the difference of squares...to continue factoring further, as you noted, you need to use the sum/difference of cubes. Now, if you begin with the difference of cubes, you'd have:

$$x^6-y^6=(x^2-y^2)(x^4+x^2y^2+y^4)$$

Now to continue, you would use the difference of squares on the first factor. To factor the second factor, we can try:

$$x^4+x^2y^2+y^4=(x^2+axy+y^2)(x^2+bxy+y^2)=x^4+(a+b)x^3y+(ab+2)x^2y^2+(a+b)axy^3+y^4$$

Equating coefficients, we obtain the system:

$$a+b=0\implies a=-b$$

$$ab+2=1\implies ab=-1$$

And so we find:

$$(a,b)=(\pm1,\mp1)$$

And we may write:

$$x^4+x^2y^2+y^4=(x^2+xy+y^2)(x^2-xy+y^2)$$

This is what we would find by using the difference of squares first, and then applying the sum/difference of cubes, so that's the simpler route to take. :D

I can use u and v in terms of (x^4+x^2y^2+y^4) just like I did in the other post, right?
 
RTCNTC said:
I can use u and v in terms of (x^4+x^2y^2+y^4) just like I did in the other post, right?

You'd wind up with radicals if you do that. :D
 
Good information.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
4
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
38
Views
4K
Replies
19
Views
3K
Back
Top