- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Find an order $f_1, f_2, \dots f_{30}$ of the functions that satisfies the relations $f_1=\Omega(f_2), f_2=\Omega(f_3), \dots, f_{29}=\Omega(f_{30})$$$\frac{n}{\lg n} , \ \ n^{\lg n} ,\ \ (\sqrt{2})^{\lg n}, \ \ n^2, \ \ n!, \ \ (\lg n)! ,\ \ \left( \frac{3}{2} \right)^n ,\ \ n^3 ,\ \ \lg^2 n ,\ \ \lg(n!) ,\ \ 2^{2^n}, \ \ n^{\frac{1}{\lg n}}, \ \ \ln{\ln n}, \ \ e^{\log_{10} n }, \ \ n \cdot 2^n, \ \ n^{\lg{\lg n}}, \ \ \ln n, \ \ 1 ,\ \ 2^{\lg n}, \ \ (\lg n)^{\lg n}, \ \ e^n ,\ \ 4^{\lg n}, \ \ (n+1)!, \ \ \sqrt{\lg n}, \ \ \lg{\lg{\lg n}}, \ \ 2^{\sqrt{2 \lg n}}, \ \ n, \ \ 2^n ,\ \ n \lg n, \ \ 2^{2^{n+1}}$$
How can I find the order of the functions?? (Wondering) Do I have to find the limits of all the functions pairwise? Or is there an easier and faster way?? (Wondering)
I have done the following: The functions are:
$$\frac{n}{\lg n} , \ \ n^{\lg n} ,\ \ (\sqrt{2})^{\lg n}=\sqrt{n}, \ \ n^2, \ \ n!, \ \ (\lg n)! ,\ \ \left( \frac{3}{2} \right)^n ,\ \ n^3 ,\ \ \lg^2 n ,\ \ \lg(n!) ,\ \ 2^{2^n}, \ \ n^{\frac{1}{\lg n}}=2, \ \ \ln{\ln n}, \ \ e^{\log_{10} n }, \ \ n \cdot 2^n, \ \ n^{\lg{\lg n}}, \ \ \ln n, \ \ 1 ,\ \ 2^{\lg n}, \ \ (\lg n)^{\lg n}, \ \ e^n ,\ \ 4^{\lg n}=n^2, \ \ (n+1)!, \ \ \sqrt{\lg n}, \ \ \lg{\lg{\lg n}}, \ \ 2^{\sqrt{2 \lg n}}, \ \ n, \ \ 2^n ,\ \ n \lg n, \ \ 2^{2^{n+1}}$$We know that $$\log^a n < n^b < c^n, \forall a, b>0, \forall c>1$$
Is the following classification correct?? (Wondering)
Constants: $1, n^{\frac{1}{\lg n}}$
Logarithms: $\lg{\lg{\lg n}}, \lg^2 n, \lg(n!), \sqrt{\lg n}, (\lg n)^{\lg n}, \ln{\ln n}, \ln n$
Polynomials: $(\sqrt{2})^{\lg n}, n^{\lg n}, n^2, n^3, n,e^{\log_{10} n } ,4^{\lg n}, \frac{n}{\lg n}$
Exponentials: $n!, (\lg n)!, \left( \frac{3}{2} \right)^n, 2^{2^n}, n \cdot 2^n ,2^{\lg n}, e^n, (n+1)!, 2^{\lg n}, 2^n, n \lg n, 2^{\sqrt{2 \lg n}}, 2^{2^{n+1}}$
Find an order $f_1, f_2, \dots f_{30}$ of the functions that satisfies the relations $f_1=\Omega(f_2), f_2=\Omega(f_3), \dots, f_{29}=\Omega(f_{30})$$$\frac{n}{\lg n} , \ \ n^{\lg n} ,\ \ (\sqrt{2})^{\lg n}, \ \ n^2, \ \ n!, \ \ (\lg n)! ,\ \ \left( \frac{3}{2} \right)^n ,\ \ n^3 ,\ \ \lg^2 n ,\ \ \lg(n!) ,\ \ 2^{2^n}, \ \ n^{\frac{1}{\lg n}}, \ \ \ln{\ln n}, \ \ e^{\log_{10} n }, \ \ n \cdot 2^n, \ \ n^{\lg{\lg n}}, \ \ \ln n, \ \ 1 ,\ \ 2^{\lg n}, \ \ (\lg n)^{\lg n}, \ \ e^n ,\ \ 4^{\lg n}, \ \ (n+1)!, \ \ \sqrt{\lg n}, \ \ \lg{\lg{\lg n}}, \ \ 2^{\sqrt{2 \lg n}}, \ \ n, \ \ 2^n ,\ \ n \lg n, \ \ 2^{2^{n+1}}$$
How can I find the order of the functions?? (Wondering) Do I have to find the limits of all the functions pairwise? Or is there an easier and faster way?? (Wondering)
I have done the following: The functions are:
$$\frac{n}{\lg n} , \ \ n^{\lg n} ,\ \ (\sqrt{2})^{\lg n}=\sqrt{n}, \ \ n^2, \ \ n!, \ \ (\lg n)! ,\ \ \left( \frac{3}{2} \right)^n ,\ \ n^3 ,\ \ \lg^2 n ,\ \ \lg(n!) ,\ \ 2^{2^n}, \ \ n^{\frac{1}{\lg n}}=2, \ \ \ln{\ln n}, \ \ e^{\log_{10} n }, \ \ n \cdot 2^n, \ \ n^{\lg{\lg n}}, \ \ \ln n, \ \ 1 ,\ \ 2^{\lg n}, \ \ (\lg n)^{\lg n}, \ \ e^n ,\ \ 4^{\lg n}=n^2, \ \ (n+1)!, \ \ \sqrt{\lg n}, \ \ \lg{\lg{\lg n}}, \ \ 2^{\sqrt{2 \lg n}}, \ \ n, \ \ 2^n ,\ \ n \lg n, \ \ 2^{2^{n+1}}$$We know that $$\log^a n < n^b < c^n, \forall a, b>0, \forall c>1$$
Is the following classification correct?? (Wondering)
Constants: $1, n^{\frac{1}{\lg n}}$
Logarithms: $\lg{\lg{\lg n}}, \lg^2 n, \lg(n!), \sqrt{\lg n}, (\lg n)^{\lg n}, \ln{\ln n}, \ln n$
Polynomials: $(\sqrt{2})^{\lg n}, n^{\lg n}, n^2, n^3, n,e^{\log_{10} n } ,4^{\lg n}, \frac{n}{\lg n}$
Exponentials: $n!, (\lg n)!, \left( \frac{3}{2} \right)^n, 2^{2^n}, n \cdot 2^n ,2^{\lg n}, e^n, (n+1)!, 2^{\lg n}, 2^n, n \lg n, 2^{\sqrt{2 \lg n}}, 2^{2^{n+1}}$