MHB Yes, your factorization is correct.

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Factoring
AI Thread Summary
The expression A^2 - B^2 + 16A + 64 can be factored using the difference of squares method. Initially, it was incorrectly grouped, but the correct approach reveals it can be rewritten as (A + 8)^2 - B^2. This leads to the final factorization of (A + 8 + B)(A + 8 - B). The discussion highlights the importance of recognizing perfect squares in factoring. More questions from the same textbook section are anticipated in future posts.
mathdad
Messages
1,280
Reaction score
0
Precalculus by David Cohen, 3rd Edition
Chapter 1, Section 1.3.
Question 50.

Factor the expression.

A^2 - B^2 + 16A + 64

Factor by grouping method.

Group A = A^2 - B^2

Group A = (A - B)(A + B)

Group B = 16A + 64

Group B = 16(A + 4)

Group A + Group B

(A - B)(A + B) + 16(A + 4)

Correct?
 
Mathematics news on Phys.org
RTCNTC said:
Precalculus by David Cohen, 3rd Edition
Chapter 1, Section 1.3.
Question 50.

Factor the expression.

A^2 - B^2 + 16A + 64

Factor by grouping method.

Group A = A^2 - B^2

Group A = (A - B)(A + B)

Group B = 16A + 64

Group B = 16(A + 4)

Group A + Group B

(A - B)(A + B) + 16(A + 4)

Correct?

No.
above is not factors. it is sum of 2 expressions

$A^2 - B^2 + 16A + 64 = A^2 + 16A + 64 - B^2 = (A+8)^2 - B^2 = (A+8+B)(A+8-B)$
 
Last edited:
kaliprasad said:
No.
above is not factors. it is sum of 2 expressions

$A^2 - B^2 + 16A + 64 = A^2 + 16A + 64 - B^2 = (A+8)^2 - B^2 = (A+8+B)(A+8-B)$

Why did you put B^2 to the far right?

Why did you put 16A + 64 in the center between A^2 and B^2?
 
Because it was convenient. Kaliprasad recognized that A^2a+ 16A+ 64= (A+ 8)^2 is itself a "perfect square" so this could be written as a single "difference of squares"
 
More factoring questions will be posted tomorrow from section 1.3 in David Cohen's precalculus textbook, third edition.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
2
Views
1K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
11
Views
3K
Replies
4
Views
2K
Back
Top