- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Wave)
Let $R$ be a relation.
Show the following sentences:
That's what I have tried:
Is that what I have tried right or have I done something wrong? (Thinking)
Also, how could we prove the fourth identity $(R^{-1})^{-1}=R$ ?
Let $R$ be a relation.
Show the following sentences:
- $dom(R^{-1})=rng(R)$
- $rng(R^{-1})=dom(R)$
- $fld(R^{-1})=fld(R)$
- $(R^{-1})^{-1}=R$
That's what I have tried:
- Let $x \in dom(R^{-1})$. Then $\exists y$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow x \in rng(R)$.
So, $dom(R^{-1}) \subset rng(R)$.
Let $y \in rng(R)$. Then $\exists x$ such that $<x,y> \in R \Rightarrow <y,x> \in R^{-1} \Rightarrow y \in dom(R^{-1})$.
So, $rng(R) \subset dom(R^{-1})$.
Therefore, $rng(R)=dom(R^{-1})$.
- Let $y \in rng(R^{-1})$. Then $\exists x$ such that $<x,y> \in R^{-1} \Rightarrow <y,x> \in R \Rightarrow y \in dom R$.
So, $rng(R^{-1}) \subset dom R$
Let $y \in dom R$. Then $\exists y$ such that $<x,y> ain R \Rightarrow <y,x> \in R^{-1} \Rightarrow x \in rng(R^{-1})$
So, $dom R \subset rng(R^{-1})$.
Therefore, $dom R = rng(R^{-1})$.
- $$fld(R^{-1})=dom(R^{-1}) \cup rng (R^{-1})=rng(R) \cup dom R$$
$$fld(R)=dom R \cup rng(R)$$
Is that what I have tried right or have I done something wrong? (Thinking)
Also, how could we prove the fourth identity $(R^{-1})^{-1}=R$ ?