Work to move a point charge from infinity to the centre of a charge distribution

  • #1
LeoJakob
21
1
Electrostatic potential $$ \Phi(\vec{r})=k \int \mathrm{d}^{3} r \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} (i) $$ with $$ k=\frac{1}{4\pi\epsilon_{0}} $$ in SI units.
What work is required to move a point charge q from infinity to the center of the through $$ \rho(\vec{r})=\rho_{0}\mathrm{e}^{-a r} (ii) $$ given charge distribution, where $$ a \text{ and } \rho_{0} $$ are constants? Work in Gaussian units.

To solve the problem I would use spherical coordiantes. The potential only depends on the radial difference between the charge q with position
$$\vec{r} = r\hat{e}_r \text{ and the location vector of the charge distribution element } \vec{r'} = r' \hat{e}_r \text{ such that }\\
\left|\vec{r}-\vec{r'}\right| = \sqrt{(r-r')^2}
$$

$$\text{Define } \Phi(\infty)=0 \text{ then the work is given by } W= q \Phi(\vec r)=q \Phi(r)$$

$$W= q\Phi(\vec{r})=k \int \mathrm{d}^{3} r' \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}= \int \mathrm{d}^{3} r' \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}=4\pi\int \limits_\infty^0 (r')^3 \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}dr^{\prime}$$

The factor 4pi comes from the integration in spherical coordinates and k=1 in Gaussian units.

Is my approach right?
 
Physics news on Phys.org
  • #2
I assume the 3 in $$4\pi\int \limits_\infty^0 (r')^3 \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}dr^{\prime}$$is a typo ?

I don't agree with
LeoJakob said:
the potential only depends on the radial difference between the charge q with position

And certainly not with ##\left |\vec{r}-\vec{r}^{\prime}\right| = {\sqrt{(r-r')^2}}##

However -- fortunately -- you are only interested in ##\vec r=\vec 0##, so if you fill that in in ##(i)## you're allright.

##\ ##
 
  • Like
Likes LeoJakob
  • #3
BvU said:
I assume the 3 in $$4\pi\int \limits_\infty^0 (r')^3 \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}dr^{\prime}$$is a typo ?

I don't agree withAnd certainly not with ##\left |\vec{r}-\vec{r}^{\prime}\right| = {\sqrt{(r-r')^2}}##

However -- fortunately -- you are only interested in ##\vec r=\vec 0##, so if you fill that in in ##(i)## you're allright.

##\ ##
First of all: Thanks for taking the time to answer me :)

the 3 in $$4\pi\int \limits_\infty^0 (r')^3 \frac{\rho(r^{\prime})}{\sqrt{(r-r')^2}}dr^{\prime}$$is a typo because:

$$W= q\Phi(\vec{r})=k \int \mathrm{d}^{3} r' \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}=\int \limits_{0}^{2 \pi} \int \limits_{0}^{\pi} \int \limits_{\infty}^{0} \frac{p\left(r^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}(\sin \theta) \cdot\left(r^{\prime}\right)^{2} d r^{\prime} d \theta d \phi \\ =\int \limits_{0}^{2 \pi} d \phi \int \limits_{0}^{\pi} \sin \theta d \theta \int \limits_{\infty}^{0}\left(r^{\prime}\right)^{2} \frac{\rho \left(r^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d r^{\prime} =4\pi\int \limits_\infty^0 (r')^2 \frac{\rho(r^{\prime})}{\left|\vec{r}-\vec{r}^{\prime}\right|}dr^{\prime} \\ \Rightarrow $$

Would you agree with(?):

$$q\Phi(0)=4\pi\int \limits_\infty^0 (r')^2 \frac{\rho_{0}\mathrm{e}^{-a r^{\prime}})}{\left|\vec{r}^{\prime}\right|}dr^{\prime} $$

Why do you think the following is wrong?

$$\left|\vec{r}-\vec{r}^{\prime}\right|=\left|\left(r-r^{\prime}\right) \vec{e}_{r}\right|=\left|r-r^{\prime}\right| \cdot \underbrace{\| \vec{e}_{r}||}_{=1}=\sqrt{\left(r-r^{\prime}\right)^{2}} $$
 
  • #4
LeoJakob said:
First of all:

Ah, and I forgot:
:welcome: ##\qquad ##!​

LeoJakob said:
Why do you think the following is wrong?$$\left|\vec{r}-\vec{r}^{\prime}\right|=\left|\left(r-r^{\prime}\right) \vec{e}_{r}\right|=\left|r-r^{\prime}\right| \cdot \underbrace{\| \vec{e}_{r}||}_{=1}=\sqrt{\left(r-r^{\prime}\right)^{2}}$$
Which ##\vec e_r## would that be ? The one from ##\vec r## or the one from ##\vec r'## ?

If ##|\vec r| = |\vec r'|## then ##|\vec r -\vec r'| =0 ## only if ##\theta=\theta'\ \&\ \phi=\phi'## !
1706223420229.png

The ##\hat e_r ## unit vector for ##\vec r -\vec r'## is not along ##\hat e_r## nor is it along ##\hat e_{r'}## !##\ ##
 
Last edited:
  • Like
Likes LeoJakob
  • #5
Thanks for the welcome :) I now understand my mistake, thank you very much ! :)
 

Similar threads

Replies
1
Views
428
Replies
2
Views
343
  • Electromagnetism
Replies
14
Views
1K
Replies
3
Views
399
  • Electromagnetism
Replies
10
Views
1K
  • Introductory Physics Homework Help
Replies
17
Views
427
Replies
3
Views
960
Replies
2
Views
856
  • Advanced Physics Homework Help
Replies
1
Views
481
Replies
1
Views
422
Back
Top