Dexter,
Please don't be so quick to condescend. I'm well aware of:
\nabla^{2}V = -\frac{\rho}{\epsilon_0}
But how can you refute what I'm saying when Griffiths begins with Coulomb's law and the Principle of Superposition (experimental results that cannot be derived from any more fundamental results), and does just what he claimed could be done? He derives the whole rest of electrostatics from these two properties of electric charge! Maxwell's equations, as they are presented to us at the undergraduate level, are the end result, the culmnation of (seven chapters in this case) worth of material! With them, the theory is complete, as we are told. In other words, electromagnetism is presented as it was discovered by the fantastic experimental work of all those 18th/19th century guys, Benjamin Franklin, Coulomb, Gauss, Ampere, Faraday, and finally those amazing dudes, Lorentz, Maxwell et al. Presented in this manner, Maxwell's equations arise one by one, as Gauss's law, Ampere's law, Faraday'a law, etc. So how can you blame me for perceiving it otherwise? And since you clearly don't believe me, here it is verbatim.
From Griffiths' Introduction to Electrodynamics, 3rd Ed. Page 59.
Coulomb's law and the principle of superposition constitute the physical input for electrostatics -- the rest, except for some special properties of matter, is mathematical elaboration of these fundamental rules.
I understand what you are saying about Maxwell's equations being axiomatic. After all, \nabla \cdot \mathbf{B} = 0 expresses an intrinsic property of magnetic fields that we can observe...they are divergenceless, solenoidal. And as you stated, any result in classical electrodynamics stems from Maxwell's Equations. Since you are far more knowlegable than I am, I'll ask: why is the statement (quoted) not an equally valid stance? Is it "wrong"?
I also recognize that classical electrodynamics is "special"...Maxwell's equations exemplify the perfect consistency and the inherent symmetry. Griffiths even goes so far as to say that subsequant theories strive to emulated this degree of completion.